email   Email Us: info@lupinepublishers.com phone   Call Us: +1 (914) 407-6109   57 West 57th Street, 3rd floor, New York - NY 10019, USA

Lupine Publishers Group

Lupine Publishers

  Submit Manuscript

ISSN: 2643-6736

Advances in Robotics & Mechanical Engineering

Research Article(ISSN: 2643-6736)

Gyroscopic Torques Acting on Crushing Mill

Volume 1 - Issue 4

Ryspek Usubamatov*

  • Author Information Open or Close
    • Department of Automation and Robotics, Kyrgyzstan

    *Corresponding author: Ryspek Usubamatov, Department of Automation and Robotics, Kyrgyz State Technical University named after I. Razzakov, 420044, Bishkek, Kyrgyzstan

Received: January 22, 2019;   Published: January 29, 2019

DOI: 10.32474/ARME.2018.01.000120

Full Text PDF

To view the Full Article   Peer-reviewed Article PDF

Abstract

Numerous mechanisms with rotating objects in engineering manifest gyroscopic effects, which mathematical models formulated on the law of kinetic energy conservation and the action of inertial torques. Known theories of gyroscopic effects are far from the practical result of the action inertial torques on the rotating objects. The new study demonstrates that the gyroscopic effects are the result of the simultaneous and interdependent action of the resistance and precession torques of rotating objects around different axes. The centrifugal and Coriolis forces are generated the first torques and the second one by the common inertial forces and the change in the angular momentum of the rotating mass of a spinning object. The principle of gyroscope effects has been applied in the crushing pendulum mills used for ore, seeds, etc., where the intense pressure is desired. The new principles of the action of internal and external torques on the crushing mill enable for the computing the actual forces that produce the work. This manuscript represents the mathematical model for the actual torques and power that manifest the crushing mill.

Keywords: Gyroscopic Effects; Inertial Torques; Crushing Mill

Abstract| Introduction| Results and Discussion| Conclusion| References|

https://www.high-endrolex.com/21