email   Email Us: phone   Call Us: +1 (914) 407-6109   57 West 57th Street, 3rd floor, New York - NY 10019, USA

Lupine Publishers Group

Lupine Publishers

  Submit Manuscript

ISSN: 2690-5760

Journal of Clinical & Community Medicine

Research Article(ISSN: 2690-5760)

Combat Medic efast with Novel and Conventional Portable Ultrasound Devices: A Prospective, Randomized, Crossover Trial Volume 3 - Issue 3

CPT Roland F Salazar1*, Jonathan D Monti1, Aaron J Cronin1, Brian J Ahern1, Brett C Gendron2, Michael D Perreault1 and Jason F Naylor1

  • 1Madigan Army Medical Center, Joint Base Lewis McChord, Washington, USA
  • 2Brooke Army Medical Center, JBSA Fort Sam Houston, Texas, USA

Received:August 05, 2021   Published: August 13, 2021

Corresponding author:Roland F Salazar, 9040 Jackson Avenue, Joint Base Lewis McChord, Washington, USA

DOI: 10.32474/JCCM.2021.03.000166


Fulltext PDF

To view the Full Article   Peer-reviewed Article PDF


Background: Extended Focused Assessment with Ultrasonography in Trauma (eFAST) reliably identifies non-compressible torso hemorrhage (NCTH), a major cause of battlefield death. Increased portability of ultrasound (US) enables eFAST far forward on the battlefield, and published data demonstrate combat medics can learn and reliably perform US exams. Sonivate has developed an US device with an intuitive graphical user interface (GUI) and novel, finger-worn transducer with built-in linear and phased arrays, the SonicEye®. We evaluated combat medic eFAST performance between the novel SonicEye® and a conventional device made by General Electric, the Vscan Extend™.

Methods: This was a prospective, randomized, crossover trial completed at a single U.S. military installation. Subjects were U.S. Army combat medics with no previous US experience. Subjects performed an eFAST on a live human and a simulation model with both devices after a brief training intervention. Our primary outcome was time in seconds for eFAST completion, limited to 600 seconds. Secondary outcomes included: diagnostic accuracy, technical adequacy using a validated task-specific checklist, and enduser appraisal of device ease-of-use with 5-point Likert items. This study was approved by the local institutional review board.

Results: Forty subjects volunteered, most were male (67.5%), less than 36 years old (95.0%), and in the grade E-4 or below (75.0%). Subjects performed a total of 160 eFAST (80 novel, 80 conventional). We found no significant difference in time for eFAST completion between the novel and conventional devices (391 seconds [95% CI 364, 417] versus 352 seconds [95% CI 325, 379]; p = 0.71). We also found there no significant differences between the novel and conventional devices with respect to diagnostic accuracy (91.5% versus 89.2%; p = 0.28) and technical adequacy (75.0% versus 72.5%; p = 0.28). However, we did find that subjects preferred the image quality of the novel device (4.3 versus 3.6; p< 0.01), while favoring the conventional transducer (3.8 versus 4.3; p = 0.04).

Conclusion: Combat medic eFAST performance across devices did not differ with respect to time to completion, diagnostic accuracy, and technical adequacy. Medics with limited US experience performed diagnostically accurate eFAST after a brief training intervention. Future research should assess learning gaps and skill retention in order to guide development of U.S. military US training programs for combat medics..

Keywords: Postoperative Fever; Gynecological Surgery; Surgical Site Infection

Abstract| Introduction| Methods| Results| Discussion| Conclusion| Disclaimer| Funding| Conflict of Interest| References|