PFM Eugênio1, PL Ramos2, JV Alberice1, ANM de Araújo3, NA Assunção3, L Juliano4, ENVM Carrilho5, E Carrilho1 and LTD Cappelini1,4*
Received:March 14, 2020; Published: June 18, 2020
*Corresponding author: LTD Cappelini, Instituto de Química de São Carlos and Instituto de Farmacologia e Biologia Molecular, Universidade Federal de São Paulo, Brazil
DOI: 10.32474/CTBM.2020.01.000124
Keywords:Leachate; organic fertilizer; proteins; waste
In recent years the, Foundation Zoological Park of São
Paulo (FZPSP) implemented and put into operation the Organic
Composting Production Unit (OCPU). The main goal of this action
was to give a new destination to the organic waste collected daily
in the park since before that sustainable attitude, this waste had
the same fate as the usual household waste: landfills. Currently,
the composting produced in OCPU serves as fertilizer for the park
gardens and food cultivation in the Rural Production Unit (UPR),
where much of the food served to the animals in the Zoo (ZOO) and
Zoo Safari comes from Bernal et al [1].
Leachate is a liquid residue of high organic contents and
strong color produced during the percolation of water through the
composted organic waste. During the passage of this water, various
chemical, physico- chemical and fermentation processes occur
concurrently and, for this reason, various organic and inorganic
compounds, besides that microorganism and its metabolites can be
transferred to the leachate. Thus, leachate from different sources
can be considered as a distinct matrix with specific characteristics.
Currently, what is known of leachate are those generated in
landfills that have a high toxic potential. But it can be considered
that the one produced during the composting in FZPSP is different,
due to the nature of the organic material and also the water used to
cool the composters, which runs several times by the composting
systems. Therefore, because there is very few information on
leachates from different sources other than municipal landfills,
by the differentiated characteristics of the process and also of the
materials used during composting at OCPU there was interest in
studying this particular leachate, the potential of this matrix in
bringing nutritional and proteomic information.
The materials used for composting are shredded tree branches
and leaves from the surrounding Atlantic rain forest, manure,
waste food and carcasses from small and large animals (previously
reduced in the room necropsy).
The leachate sample collected for the experiments circulated by
the cooling system of the production of composting for a period of
40 days. After this period, about 5 L of this leachate was collected in
an amber bottle and stored at 4˚C.
The digestion of the leachate for analysis of macro and micronutrients was done according to the literature Carrilho et al. [2]. After digesting the sample, the nitrogen was analyzed according to the specifications of the spectrophotometer protocol HACH, DR 6000 (Loveland, CO, USA).The nutrients As, Cr, Pb, Cd, Ca, K, Mg, Mn, Cu, Zn, P, Fe, Na, and Al were determined inductively coupled plasma optical emission simultaneous spectrometer with radial view ICP OES VISTA RX (Varian - now part of Agilent Company - Mulgrave, Australia) was used for elements determination according to the conditions cited in literature Carrilho et al. [2].
The proteins from leachate were extracted using the method outlined by Wang and colleagues Wang et al. [3].Digested peptides were subjected to analysis by nano-LC/MS-MS using a nano-LC system (EASY-NLC II, Thermo Scientific) coupled online to a hybrid ion trap linear-Orbitrap (LTQ Orbitrap Velos, Thermo Scientific) mass spectrometer, through a nanospray source Nano-Flex II nanospray ion (Thermo Scientific). The mobile phases used were: A) 0.1% formic acid in water and B) 0.1% formic acid in ACN. The pre-column used was (C18, 100 μm ID x 2 cm, Thermo Scientific) and C18 column (10 cm × 75 μm ID, 3 μm, 120 Å, Thermo Scientific). The gradient used was: 5% B isocratic, 0-5 min; 5% - 35% B, 5-65 min; 35 - 90% B, 65-80 min, 5% B isocratic, 80-90 min. The total analysis time, from column equilibration to the analysis, was approximately 105 min. All LC/MS-MS data were acquired using X Calibur software, version 2.0.7 (Thermo Fisher Scientific). LC-MS data files (MS2 centroided) were used for database searching with MASCOT (Matrix Science, version 2.3.0.0).
The results of N present in the FZPSP leachate can be seen in (Table 1), together with published data from other leachates. Currently, there aren’t studies in the literature reporting amounts of nutrients in leachates with the same characteristics of those produced by FZPSP. There are only studies on leachates from landfills, piggeries, poultry farms, among others.
Table 1: Macro and micronutrients analysis of the FZPSP leachate.
*n = 4; ** Limit of Detection. The standard deviation of all means of the samples analyzed was below 7%.
The nutrients found in FZPSP leachate can be observed in (Table 1). The use of leachate as an adjunct source of nutrients to the crop occurs mainly to reduce costs in agriculture. However, a preliminary analysis of this material is necessary as there may be excess of certain nutrients that cause damage to the soil and crops.
The results obtained from the shotgun of the leachate proteins returned results with a low score, which was expected since the leachate is a waste from composting and has much interference that make it difficult to extract and identify the proteins. Therefore, few proteins could be identified. Only those with a score equal to or greater than 30% (acceptable value for the shotgun technique reference[1] were considered. Thus, 16 proteins were identified, all belonging to bacterial genera as described below: MEMO1 family protein APE_1771 (Aeropyrumpernix); Uncharacterized protein AF_1654 (Archaeoglobusfulgidus); Protein translation factor SUI1 homolog (Cenarchaeumsymbiosum); tRNA-guanine(15) transglycosylase(Methanobrevibactersmithii); Phosphoenolpyruvate guanylyltransferase and L-fuculose phosphate aldolase (Methanococcusaeolicus); L- lysine 2,3-aminomutase (Methanococcusmaripaludis); Probable L-aspartate dehydrogenase (MethanospirillumhungateiJF-1); 50S ribosomal protein L1 (Pyrobaculumislandicum); Adenosylhomocysteinase(Saccharolobussolfataricus); DNA double-strand break repair Rad50 ATPase (Saccharolobussolfataricus); S- adenosylmethionine decarboxylase proenzyme (Sulfolobusacidocaldarius); Phosphoribosylaminoimidazole- succinocarboxamide synthase (Sulfurisphaeratokodaii); NAD kinase (Sulfurisphaeratokodaii); Maltodextrin phosphorylase (Thermococcus litoralis); Probable tRNA pseudouridine synthase B (Thermococcus onnurineus).It is interesting to note that the bacteria related to the proteins found live in extreme environments (such as extremophiles, hyperxtrmophiles, acidophiles,etc) . and/or those capable of generating energy from sulfur. That is, they are able to survive in the leachate which is an extreme condition. In general, the proteins identified have the function of obtaining energy to maintain the bacteria.
Observing the results presented, it can be concluded that the leachate produced from the FPZSP composting process can be used in fertilizing plants as an organic fertilizer in addition to being a potential source of molecules to be explored for different applications.
The financial support provided by Fundação de Amparo a Pesquisa do Estado de São Paulo (2014/07037-0) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (163888/2013-2).
Bio chemistry
University of Texas Medical Branch, USADepartment of Criminal Justice
Liberty University, USADepartment of Psychiatry
University of Kentucky, USADepartment of Medicine
Gally International Biomedical Research & Consulting LLC, USADepartment of Urbanisation and Agricultural
Montreal university, USAOral & Maxillofacial Pathology
New York University, USAGastroenterology and Hepatology
University of Alabama, UKDepartment of Medicine
Universities of Bradford, UKOncology
Circulogene Theranostics, EnglandRadiation Chemistry
National University of Mexico, USAAnalytical Chemistry
Wentworth Institute of Technology, USAMinimally Invasive Surgery
Mercer University school of Medicine, USAPediatric Dentistry
University of Athens , GreeceThe annual scholar awards from Lupine Publishers honor a selected number Read More...