email   Email Us: info@lupinepublishers.com phone   Call Us: +1 (914) 407-6109   57 West 57th Street, 3rd floor, New York - NY 10019, USA

Lupine Publishers Group

Lupine Publishers

  Submit Manuscript

ISSN: 2637-4579

Open Access Journal of Biomedical Engineering and Biosciences

Research Article(ISSN: 2637-4579)

Preparation of Carbon Nanotube Reinforced Gelatin-Chitosan- Hydroxyapatite Biocomposite for Bone Tissue Engineering

Volume 1 - Issue 3

Tanjina Islam1, Khandaker S Salem1, Shanta Biswas1, Papia Haque1, Sunzida H Rimu2 and Mohammed Mizanur Rahman1,21,2*

  • Author Information Open or Close
    • 1Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Bangladesh
    • 2National Institute of Textile Engineering and Research, Bangladesh

    *Corresponding author: MM Rahman, Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Bangladesh

Received: February 23, 2018;   Published: February 28, 2018

DOI: 10.32474/OAJBEB.2018.01.000113

Full Text PDF

To view the Full Article   Peer-reviewed Article PDF

Abstract

Uniform and highly stable dispersion of multi wall carbon nanotube (MWCNT) in aqueous solution using surfactant sodium dodecyl sulphate was prepared by physical adsorption of surfactant molecules on to the nanotubes which overcomes the van der Waals forces and prevents aggregation between individual nanotubes. Chemically functionalized MWCNT dispersion was also prepared by mixed acids using (3:1) (H2SO4: HNO3) that was obtained to be less cytotoxic than the physically functionalized MWCNT dispersion. Chemically functionalized MWCNT-Hydroxyapatite (HAp)-Chitosan-Gelatin composite scaffold samples were prepared by solution casting method after optimizing the cytotoxic effect results. The effect of varying content of MWCNTs on the physico-mechanical, thermal, morphological properties of the nanocomposites was evaluated. The chemical change of composite with varied MWCNT content was studied using FTIR and morphological characterization was done by SEM, where Porous structure was observed on the composites, which is supposed to be required as criteria of a bone scaffold to grow bone tissues. Compressive Strength (CS) of composite scaffold increased by 95.82% with increase of MWCNT content (from 0.1% to 0.25%). The thermal characterization of nano-composites was done by TGA and DSC and it was found that the nanocomposite containing 0.25% MWCNTs showed highest thermal stability. TGA of nanocomposites containing 0.25% MWCNT increased by 363.16% in comparison to that of nanocomposites containing 0.1% MWCNTs. However, due to highest cytotoxicity of nanocomposite having 0.25% CNTs, 0.1% composition was considered the best.

Abstract| Introduction| Material and Methods| Results and Discussion| Conclusion| References|