email   Email Us: info@lupinepublishers.com phone   Call Us: +1 (914) 407-6109   57 West 57th Street, 3rd floor, New York - NY 10019, USA

Lupine Publishers Group

Lupine Publishers

  Submit Manuscript

ISSN: 2638-5910

Archives of Diabetes & Obesity

Research Article(ISSN: 2638-5910)

Potentiation of Activity of Benfotiamine Co Administered with Thyroxine in Diabetes Induced Peripheral Neuropathy in Rats

Volume 2 - Issue 2

Hariprasad MG1*, Rema Razdan1 and Yasha TC2

  • Author Information Open or Close
    • 1Department of Pharmacology, Al-Ameen College of Pharmacy, India
    • 2Department of Neuropathology, NIMHANS, India

    *Corresponding author:Hariprasad MG, Department of Pharmacology, Al-Ameen College of Pharmacy, India

Received:June 11, 2019;   Published:July 19, 2019

DOI: 10.32474/ADO.2019.02.000135

Full Text PDF

To view the Full Article   Peer-reviewed Article PDF

Abstract

Diabetic peripheral neuropathy (DPN) is a multi-etiological microvascular complication. Prolong hyperglycemia leads to formation of advance glycation end product (AGE) and oxidative stress which are contributors of nerve dysfunction. DPN manifests as pain, slowing of nerve conduction velocity (NCV), sensory loss etc. The aim of the present study is to evaluate the individual and combined protective effect of benfotiamine (BT) and thyroxine (T4) against Streptozotocin (STZ) induced DPN in rats. After 48 hours of a single injection of STZ (60 mg/kg bw i.p) diabetic rats were administered BT (100 mg/kg p.o.), T4 (1mg/kg.s.c,) and their combination. Diabetic rats at 5th week, exhibited significant decrease in body weight, hyperalgesia, decreased muscle coordination, grip strength and NCV. Antioxidant activity of reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) was also found to be significantly decreased. Significant higher levels of glycosylated hemoglobin (GHb) and Malondialdehyde (MDA) were also observed in diabetic rats. Treatment with BT, T4 and their combination attenuated the decrease in level of nociceptive threshold, muscle coordination, grip strength. NCV and antioxidant activity. Significant decrease in the elevated levels of GHb and MDA was also observed. A histopathological study of sciatic nerve also confirmed the improvement in cell architecture as compared to diabetic rats and has strengthened the neuroprotective effect of BT and T4 combination group. An improved In Vitro AGE inhibitory activity of BT, T4 and their combination was observed. These finding suggested that BT, T4 and their combination exerts a protective effect in progression of diabetic neuropathy by decreasing GHb, AGE formation and oxidative stress.

Keywords: Micro vascular; NCV; Antioxidant; AGE; Thyroxine; Benfotiamine

Abbreviations: DM: Diabetes mellitus; DPN: Diabetic Peripheral Neuropathy; MAPK: Mitogen Activated Protein Kinase; NCV: Nerve Conduction Velocity; TH: Thyroid Hormones; BT: Benfotiamine; AGE: Advance Glycation End Product; LPO: Lipid Peroxidation; SOD: Superoxide Dismutase; CAT: Catalase; GSH: Glutathione; TBARS: Thiobarbituric Acid Reactive Substances; BSA: Bovine Serum Albumin; PKC: Protein Kinase C; ROS: Reactive Oxygen Species

Abstract| Introduction| Materials and Methods| Discussion| Conclusion/| Highlights of the Study/| References|

https://www.high-endrolex.com/21