Sydnone, Münchnone, Montréalone, Mogone, Montelukast, Quebecol and Palau’amine-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules

Alireza Heidari*

California South University, Faculty of Chemistry, USA

Received: May 28, 2018; Published: June 12, 2018

*Corresponding author: Alireza Heidari, California South University, Faculty of Chemistry, 14731 Comet St. Irvine, CA 92604, USA

Abbreviations: EPPSI: Enhanced Precatalyst Preparation Stabilization and Initiation; NPM: Nano Polymeric Matrix; NPME: Nano Polymeric Modified Electrode; CEMs: Chemical Modified Electrodes; CPE: Carbon Paste Electrode

In the current editorial, we study Sydnone, Münchnone, Montréalone, Mogone, Montelukast, Quebecol and Palau’amine-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano molecules (Figure 1) incorporation into the Nano Polymeric Matrix (NPM) by immersion of the Nano Polymeric Modified Electrode (NPME) as molecular enzymes and drug
targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations. In this regard, the development of Chemical Modified Electrodes (CEMs) is at present an area of great interest. CEMs can be divided broadly into two main categories; namely, surface modified and bulk modified electrodes. Methods of surface modification include adsorption, covalent bonding, attachment of polymer Nano films, etc. Polymer Nano film coated electrodes can be differentiated from other modification methods such as adsorption and covalent bonding in that they usually involve multilayer as opposed to monolayer frequently encountered for the latter methods. The thicker Nano films imply more active sites which lead to larger analytical signals. This advantage coupled with other their versatility and wide applicability, makes polymer Nano film modified electrodes particularly suitable for analytical applications [1-27].

Electrochemical polymerization offers the advantage of reproducible deposition in terms of Nano film thickness and loading, making the immobilization procedure of a metal-based electrocatalyst very simple and reliable for Sydnone, Münchnone, Montréalalone, Mogone, Montelukast, Quebecol and Palau’amine-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano molecules-encapsulating Carbon nanotubes incorporation into the Nano Polymeric Matrix (NPM) by immersion of the Nano Polymeric Modified Electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations. Also, it must be notice that the nature of working electrode substrate in electro preparation of polymeric Nano film is very important, because properties of polymeric Nano films depend on the working electrode anti-cancer Nano materials. The ease and fast preparation and of obtaining a new reproducible surface, the low residual current, porous surface and low cost of Multi-Walled Carbon Nanotubes (MWCNTs) paste electrode. Then, Sydnone, Münchnone, Montréalalone, Mogone, Montelukast, Quebecol and Palau’amine-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano molecules-encapsulating Carbon nanotubes were incorporated into the Nano Polymeric Matrix (NPM) by immersion of the Nano Polymeric Modified Electrode (NPME) in a solution.

The modifier layer of Sydnone, Münchnone, Montréalalone, Mogone, Montelukast, Quebecol and Palau’amine-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano molecules-encapsulating Carbon nanotubes at the electrode surface acts as a Nano catalyst for the treatment of human cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations. Suitability of this Sydnone, Münchnone, Montréalalone, Mogone, Montelukast, Quebecol and Palau’amine-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano molecules-encapsulating Carbon nanotubes-modified polymeric Multi-Walled Carbon Nanotubes (MWCNTs) paste electrode toward the electrocatalytic treatment of human cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations in alkaline medium at ambient temperature was investigated [111-155].

References


18. Alireza Heidari (2016) Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO4) and Zinc (Zn2+) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Bioi Biostat 7: 292.

19. Alireza Heidari (2016) Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer (Rn2+) and Ununoctium Dimer (Uuo2+) Molecular Cations. Chem Sci 7: e1 12.


68. Alireza Heidari (2017) Electronic Coupling among the Five
Modeling, Research, Diagnosis and Treatment. Open J Anal Bioanal Chem 1(1): 014-020.


110. Alireza Heidari (2017) Vibrational Decihertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (μHz), Nanohertz (nHz), Picoherertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. International Journal of Biomedicine 7(4): 335-340.


115. Alireza Heidari (2017) Vibrational Decahertz (dHz), Hectorhertz (hHz), Kilohertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zettahertz (ZHz) and Yottahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. BAOJ Cancer Res Ther 3(3): 045-052.


129. Alireza Heidari (2018) Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HMQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation. J Endocrinol Thyroid Res 3(1).


142. Alireza Heidari (2018) Adsorption Isotherms and Kinetics of Multi-Walled Carbon Nanotubes (MWCNTs), Amorphous Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs) for Eliminating


