Diabetes Mellitus: A Multifactor Approach

Fabiana Gonçalves Ferreira and Amanda Caroline Cardoso Corrêa Carlos Menezes*
Municipal Public Server Hospital, Brazil

Received: March 30, 2018; Published: April 05, 2018

*Corresponding author: Amanda Caroline Cardoso Corrêa Carlos Menezes, Clinical Nutrition Coordinator of Municipal Public Server Hospital, Sao Paulo, Brazil

Introduction

Diabetes Mellitus (DM) is a chronic non-communicable disease characterized by chronic hyperglycemia due to an impaired glucose metabolism [1-3]. It can occur by an autoimmune process in which there is destruction of the beta cells of the pancreas, leading to deficiency of insulin secretion characterizing the DM type I, which affects children and adolescents, may be due to a combination of insulin resistance and the inadequate compensatory response to insulin secretion, predominant in the DM type II, affecting adults when glucose intolerance occurs during the second or third trimester of gestation, it is characterized gestational DM (GDM), and other types of diabetes are reported in the literature, such as those caused by genetic defects of beta cell function, disorders genetics in the action of insulin, exocrine pancreatic diseases, endocrinopathies, drug induced or other age chemical infections, viral infections, unusual immunological forms, and genetic syndromes associated with diabetes [4,5].

In 2013, according to the IDF (International Diabetes Federation), 328 million people with diabetes have been registered worldwide. It is expected a significant increase of 60% in Central and South America, leading to an incidence of 592 million by the end of 2035 [5]. DM is the sixth leading cause of death in adults in the United States. This chronic disease affects 8.3% of the population, or about 25.8 million people in the US. Among adults over 65 years old, 10.9 million are affected, which represents 26.9% of this age group. The prevalence of DM is higher in people over 65 years of age, however, have already shown a larger increase in the last decade in younger adults and is increasing due to among other reasons, to changes in diet, aging, urbanization, by the increase of the prevalence of obesity and physical inactivity [6]. DM is accompanied by several complications such as ischemic heart disease, heart failure, stroke and arterial hypertension. Hypertension is twice as frequent in the diabetic patient as in the general population. DM is the main cause of amputation of lower limbs and blindness, about 26% of patients who enter dialysis programs are diabetic [7-10]. Several studies have shown that strict glycemic control is able to reduce the complications of diabetes [11-13].

The approach to diabetes consists of medication and non-drug intervention, always accompanied by changes in lifestyle, thus, the success of the control of glycemia rates depends on patient adherence to treatment and health practices that stimulate or facilitate lifestyle change [7,14,15]. According to the American Diabetes Association, the best nutritional strategy for health promotion and chronic disease risk reduction is to obtain adequate nutrients from a varied, moderate and balanced diet based on the pillars of the Food Pyramid [16]. The recommended diet for diabetic patients should be high in fibre, with low levels of saturated fat, salt and simple sugars. Soluble fibre favours the control of dyslipidemia and glycemia, by reducing the absorption of cholesterol and carbohydrides in the intestinal environment. Low-carbohydrate, low-protein and low-lipids diets are especially indicated for diabetic patients [17]. Within the dietary approach, several trends have become essential tools for disease therapy, a new option that stands out are functional foods [18].

Several studies have stated that the inclusion of legumes in the diet plays an important role in the prevention of diseases such as diabetes, cancer and coronary heart disease [19,20]. In addition to the benefit due to the role of fibres, recently the action of the present polyphenols and their effects related to glucose metabolism should be highlighted. Dietary polyphones, presents in cocoa, tea, coffee, grape, red wine and others may inhibit α-amylase and α-glycosidase, inhibit glucose absorption in the intestine by sodium-dependent glucose transporter 1 (SGLT1), stimulate insulin secretion and reduce hepatic glucose output [21,22]. Several studies with food showed evidence of a reduction in glucose absorption and glycemic control related to these polyphenols. Works with different leaf amaranths have shown positive effects in terms of reducing hyperglycemicmias, Amanthus caudatus can inhibit the α-amylase under in in vitro conditions. The extracts contained flavonoids, saponins, alkaloids, carbohydrates, proteins, amino acids and other phenolic compounds [23]. DM type II has modifiable risk factors, therefore, feeding should be used as a preventive measure as a supporting in the treatment of the disease.
Food plays an extremely important role in glycemic control and, in addition, is able to prevent diabetes complications.

References

2. (2006) Diabetes Mellitus/Ministry of Health, Ministry of Health, Secretariat of Health Care (BR), Department of Basic Attention, Department of Health Care, Department of Primary Care, (DF): Ministry of Health, Brazil, p. 56.