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Introduction
Numerical and mathematical processing skills has a long history 

from the ancient classical Greeks Plato, Aristotle Frank, Mendel [1] 
to the birth of modern psychology, with John Dewey [2], Conant [3], 
O’Shea [4], suggesting that children learn numerical concepts by 
reinforcement, not in an abstract way, by identifying similarities, 
differences of empirical individual units, forming general concepts. 
This essay follows through the recent evolution of neuroimaging 
studies debate, sets the theoretical context of three dominant 
theories that influenced the context of research tools/methods; 
and how neuroscientific research has contributed uniquely to 
the understanding of numerosity. The essay concludes with a 
cogent argument that alternative research tools are necessary, 
complimentary, and multidisciplinary research generates different 
types/levels of new hypotheses, ensuing more reliable and valid 
information which benefits individuals, educationalists and 
society at large. Numerical processing (referring to arithmetic, 
mathematics, geometry and advanced computation) is huge. The 
paper is an eclectic review of the neurotypical findings of general 
numerical processing only but excludes dyscalculia Menon [5].

Numeracy Importance
The overwhelming research suggest that, numeracy is essential 

for progress in all aspects of life. Understanding numbers is the 
basis for developing arithmetic and mathematical skills of all 
levels and types of applications Dehaene [6], Hurford [7]. Major 
longitudinal research studies in the UK Bynner, Parsons [8], Donato 
[9], documented the phenotypic and behavioural outcomes of 
poor numerical skills and highlight the negative consequences on 
men’s and women’s, employment opportunities, health outcomes, 
social-civic involvement and overall quality of life Parsons, Banner 
[10]. Finding out if specific numerical processing is actually an 
observable brain process or not, is important to make stronger  

 
correlational claims, regarding relationships of numerosity and 
language. 

Theories and Neuroimaging
New neuroimaging tools are used to test existing and emerging 

new theories and collect data that are impossible with surveys, 
and experiments. However, without multimethod, multiparadigm 
comparisons to make valid, reliable and nomological evaluations 
of competing claims Goya, Pitre [11], Hsee [12], Hsee [13], Hagger 
[14]. Three theoretical strands attempt to explain the development 
of number processing, using different research approaches. The 
first theory suggests that language is innate, culturally constructed 
and absence impedes learning numerical concepts and knowledge 
Chomsky [15], Hurford [16], Wiese [17], Spelke [18]. Their position 
without neuroscientific data, is not supported empirically, of how, 
when, and where language underpins numerical development. The 
second theory suggests that children learn numerical concepts as 
part of lexical acquisition and development of Theory of Mind (TOM) 
Bloom [19], Clark [20-22]. TOM facilitates multiple perspective 
taking, conceptual differentiation, through social interactions, 
enabling nuanced meaning differentiation between words, symbols, 
and number associations. However, Bloom and Clark, provide weak 
empirical evidence that brain processing occurs this way, and fail to 
account for alternative hypotheses. 

The third theoretical position postulates a biological, 
evolutionary, ontogenetic Carey [23], innate ability of ‘number 
sense’ and processed in distinct brain areas Dehaene [24]. Innate, 
numerical processing is present in all cultures with and without 
dedicated number words Pica et al., 2004; Lasne [25]. Dehaene 
and co-researchers, Dehaene [26], Dehaene & Cohen [27], Dehaene 
[28] using neuroimaging data proposed that different numerical 
formats are processed in different brain regions. First, visual 
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Arabic numbers are processed by bilateral activity in inferior 
ventral occipito-temporal areas; secondly, the inferior parietal 
areas process analogical size, and approximate volume; and thirdly, 
word numbers are processed in the left perisylvian areas Dehaene 
[29]. Dehaene and colleagues, during a period of 20 years, carried 
out extensive neuroscientific research to disentangle the effects of 
language-dominant or spatial iconic representation of numerical 
processing and whether there are specific brain regions innately 
dedicated to non-verbal numerical processing Dehaene [29], 
Dehaene [28], Pica et al., 2004; Agrillo [30], Lasne [25]. 

They claim that, innate numerical ability theory is evolutionary 
Dehaene [28] Pica et al., 2004, and studied systematically 
using different tasks to understand the conceptual processes of 
numerical approximation, estimation, and manipulation related 
to concrete examples, in non-numerically literate (Amazonian 
Munduruku tribe) and literate western cultures McCrink [31]. To 
support their theory, that numbers are language-independent 
representations, Dehaene and colleagues, focused on the dedicated 
biological brain networks, which are putatively responsible for 
basic number processing. Their multimethod research produced 
diverse but supporting evidence of evolutionary innate abilities in 
animals, infants and adult humans, independent of other abilities. 
Their neuroscientific research using a range of neuroscientific 
tools, fMRI, MEG, EEG, and brain legions, suggests that the inferior 
parietal region is implicated in number processing Dehaene [28]; 
King & Dehaene, 2014. This level of specificity of explanatory power 
is only possible with neuroimaging and multimethod approaches. 
The tripartite model by Dehaene [28] implicating the horizontal 

segment of IPS, the left AG related to the perisylvian areas, and 
the bilateral PPS, was further re-tested by Piazza [32], Cohen 
Kardes [33], using fMRI, fMRA and ERP tools. These multimethod 
findings have provided convergent validity evidence that the left 
IPS processes numerical quantities irrespective of format (Arabic, 
word, and mixed format), but the right IPS processes quantities 
of Arabic numerals only. Nieder, Jacob [34,35], tested numerical 
processing of magnitudes and Approximate Number Systems, with 
primates using single cell-neuron methods and found converging 
evidence that humans and animals can process numbers without 
words, but using approximate estimates, activating different 
populations of neurons bilaterally in the IPS and lateral PFC. 
Rosenberg-Lee [36], investigated the PPC in detail to identify the 
specific cytoarchitecture for four calculations (+, -, *, %), and found 
differences in processing these basic arithmetic tasks by the IPS, 
SPL and AG. Converging neuroimaging findings using different 
neuroimaging tools, augment the credibility of prior theoretical 
positions. Hyde [37], using fNIRS, found that 6 months old babies’ 
right parietal areas, are specialised for number processing, before 
language development and that this ability is lateralized with 
environmental experiences. Artemenko [38] in a longitudinal 
fNIRS study found that fronto-parietal network brain networks for 
arithmetic are well established for adolescents. Amalric [39] found 
that blind mathematicians process advanced mathematics in similar 
brain networks as sighted without the visual experience. These 
fine-grained differences of numerical developmental processing, 
time duration, age differentiation, format presentation (numerals, 
words), provide new information and new hypotheses, and models 
which are impossible to test without neuroimaging (Table 1).

Table 1: Comparative context of research methods relevant to number processing.

Validity of data 
for numerical 
ability testing

Reliability of 
data findings 
of numerical 

abilities.

Topographic 
accuracy (loci of 

brain/genes)

Temporal 
accuracy (of 
brain/gene 

function)

Overall 
assessment

Neuro-Psychological 
Research methods 
used for numerical 

processing

Qualitative 
research methods 

1. Observations 
2. Focus groups 

and dept 
interviews

1,2. Very Weak non 
replicable

1,2. Unreliable, 
non-replicable

1,2. Impossible 
to identify brain 
regions or genes 
responsible for 

outcomes

1,2. Impossible 
to measure brain 
activity related to 

outcomes

Useful to identify 
general phenotypic 

and behavioural 
traits. Tentative 

hypothesis 
development

Quantitative Res 
tools 

1. Surveys 
2. Experiments 
3. Behavioural 

tests

1,2,3. Week 
Inferential 

correlational

1,2,3. Reasonable 
but correlational

1,2,3. Impossible 
NA

1,2,3. Impossible 
NA

Useful to test 
individual and 

group trait 
correlational 
differences

Neuroscience 
research tools

1. EEG/ERP 
2. MEG, fNIRS 

3. fMRI, 
4. TMS/tDCS, tRNS 

5. Single cell 
testing

1. Medium 
2. Medium-High 

3. High 
4. High 

5.Highest

1. High 
2. High 
3. High 
4. High 

5. Highest

1. Low 
2. Medium 

3. High 
4. Medium-High 

5. Highest

1. High 
2. High 

3. Medium 
4. Medium-good 

5. Highest

1,2. Good for 
temporal activity, 

RT. 
3.fMRI is excellent 

for locating activity 
4.tDCS/tRNS 

excellent for causal 
testing 

5.SC testing 
excellent for causal 

res.

Genetic research 
tools 1. GWS Molecular 1. excellent 1. excellent 1. excellent

1. NA, but can 
predict long term 

effects

Excellent but 
pluripotency of 

single genes
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Future Directions
The meta-analysis by Arsalidou [40], found that the core brain 

regions for numerical processing are indeed the parietal regions 
(IPS and precuneus), the insula, claustrum, the frontal cortex (e.g., 
superior and medial frontal gyri), and cingulate. However, the 
developmentally changing networks and the function of typical and 
atypical brains regarding all interconnected areas (bilateral frontal 
(DLPFC, VLPFC), parietal (IPS, AG, SMG), occipito-temporal and 
medial temporal, including HC areas) are not well understood yet, 
according to Peters and De Smedt [41]. New ways of investigating 
brain network hubs using resting-state fMRI can fine tune our 
understanding of numerical connectivity Van Den Heuvel [42].

Educational Implications
The impressive neuroscientific discoveries so far have 

identified more brain areas and networks involved using, multi-
method neuroimaging approaches to discover causal relationships 
(Amalrick et al., 2018). Glen [43] found that neuroplasticity and 
active epigenetic input of numerical exposure/talk, can improve 
and reverse some numerical deficiencies (Michels, et al., 2019). 
De Muoi, et al., (in press), eye tracking can help educationalists 
to identify appropriate individualised teaching methods to cope 
with time pressure. Dillon [44] suggest that developing relevant 
games to teach children numerical skills, and approximate 
number systems have positive and long-lasting improvements 
Khanum [45]. Researchers using tRNS, found improvements in 
brain connectivity and numerical performance Popescu [46], 
Pasqualotto [47]. Scientific advances are usually made sequentially 
Kuhn [48], Lakatos [49], Popper [50]. Investigating genetic, and 
epigenetics Kovas [51] are essential additions to neuroscientists. 
Neuroimaging is essential but not sufficient, to achieve nomological 
validity Hagger [52]. Combining new genetics with neuroscientific 
research provide more power to advance our understanding and 
models which can explain provisionally the etiology of genetic and 
phenotypic numerical behaviours [53,54-75].
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