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Introduction 
In the analysis of classical mechanics problems, there are 

cases where linear mathematical model can not fully describe the 
phenomena. If the deflection of the plate is of order of magnitude 
of its thickness, the differential equations for the deflection and 
displacements can be written in terms of nonlinear equations. These 
nonlinear equations are usually difficult to obtain the solution. 
Thus, several attempts have been tried to obviate the difficulties.

Among these attempts, it was Berger’s method which drew 
much attention. Berger[1] derived as implified nonlinear equations 
for a plate with large deflections by assuming that the strain energy 
due to the second invariants of the middle surface strains can be 
neglected when deriving the differential equations by energy 
method. Berger restricted his analysis to static and isotropic cases.

Later, his procedure was generalized to dynamics of isotropic 
plates by Nash and Modeer [2] and to dynamic phenomena 
in anisotropic plates and shallow shells by Nowinski [3]. 
Berger’methods is dealt in recent books [4] and [5]. In the research 
paper[6], Banerjee and Mazumdar review various approximate 
methods including Berger’s in relation to the investigation of 
geometrically nonlinear problems. In Sathymoorthy and Chia 
[7], a nonlinear vibration theory is formulated for rectilinearly 
orthotropic circular plates using Berger’s method. On the other  

 
hand Han and Petyt[8] report that the large vibration of in-plane 
membrane forces over the plate span for some of the laminated 
plates has been observed which will definitely affect the application 
of Berger’s hypothesis to the geometrically nonlinear analysis of 
these laminated plates.

There are many other papers giving explicit solutions to various 
cases, however the search for the existence and uniqueness of the 
solution is rare, thus it is the purpose of this paper to discuss this 
matter. We now briefly go over the Berger’s method for the circular 
plate. The deformation of the middle surface pertinent to the large 
transverse deflections is described by the equations
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In the above equations w = deflection of plate in the normal 
direction. u, v =displacement in plane
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− E = modulus of elasticity.

The strain energy due to the bending can be written as
2 2 22 2 2 2 3 2

1 2 2 2 2 2 2 2

1 1 1 1 1 1 12 2 ,
2 6s

hU D v G rdrd
r r r r r r r r r r r
ω ω ω ω ω ω ω ω φ

φ φ φ φ

         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  = ∫ ∫ + + + + + −        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂           
  (1)

where S denotes the surface of the circular plate. We can write 
the strain energy due to the stretching of the middle plane as
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The variation of the work by the external force is now
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By virtue of d’Alembert’s principle the motion of the structure 
is replaced by a state of static equilibrium governed by by the 
equation of minimum potential energy of the system,

                    ( )1 2 0U U Vδ + + =              (3)

Burger’s method is to set e2 = 0 in (2) as it is relatively negligible 
compared to other terms, and equation (3) then gives following 
equations,
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from which integration of (4) gives the interesting result the 
first strain invariant is a constant. The

governing equations are
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We consider a clamped circular plate so that boundary 
conditions are

             ( ) ( ) ( ) ( )' 0u a a a aυ ω ω= = = =        (7)

The coupling parameter is now determined from the equation 
(6) and boundary conditions (7)

as follows

                        
222

2
2 2 2

0 0

6 1 .
a

k d r dr
h a r r

π ω ωφ
π φ

  ∂ ∂ = +    ∂ ∂     
∫ ∫      (8)

We attempt to find Fourier series solutions to (5) when q = 0.
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. Here ( ) ( ),n nJ Iγ γ are the Bessel functions of the first kind and 
modified Bessel function of the first kind, respectively. When this 
solution is substituted in (5) and (8) we find
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We discuss the existence and uniqueness of the solutions to 
above infinite system of nonlinear equations. The initial conditions 
on (11) will be taken as
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If we multiply (11) by T0jand sum j from 0 to infinity, we can 
show that
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At first glance it would appear that if the initial conditions (12) 
and (13) satisfy a finite energy condition, i.e.,
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then (11) should have a solution for all t > 0. Indeed this is the 
case for finite system of the form (11) since the finite system
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has associated with it a Lipschitz constant. Therefore, successive 
approximation method may be applied to prove the existence of 
solution to (16). However, the infinite system of equations (11) is 
not Lipschitz continuous since the coefficients of Tj is unbounded 
as j →∞. Thus the method of successive approximation fails and an 
alternative procedure is necessary.

In section 2, it will be shown that under the initial conditions 
(12) and (13) solution of the finite system (16) converge to a 
solution (11) as N → ∞. In section 3 it will be shown that the 
solution of (11) satisfying initial conditions (12) and (13) is unique.
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Existence
To prove solution existence of (11), we define a set of functions 

Tj, N in the following way: for j ≤ N, Tj, N is a solution of the finite 
system of equations (16) satisfying the initial conditions (12) and 
(13) for j = 0, 1, 2, · · ·, N and for j > N set Tj, N = 0. The functions Tj, 
N are solutions of the infinite system (11),i.e.
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If in addition the initial data (12) and (13) satisfy the finite 
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Lemma 1. |A0N | is uniformly bounded independent of N 
where prime indicates differentiation with respect to t. Proof. After 
differentiating the function AN, if we employ Schwarz inequality we 
obtain
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in view of the relations (20) and (21).

Lemma 2. |AN | is uniformly bounded independent of N 

Proof. |AN | is uniformly bounded independent of N from the 
relation (22).

Thus AN is uniformly bounded and equicontinuous; by 
Arzela’s lemma, there exists a subsequence {ANi} which converges 
uniformly to a continuous function A(t). Let Tj be the solution of 
the(linear) equation
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satisfying the initial conditions (12) and (13). The existence of 
solutions to (11) is settled by the following theorem.

Theorem 1. The infinite system of (11) have a solution satisfying 
the initial data (12) and (13). Proof. It is only necessary to show 
that the solutions of linear system (24) furnish a solution of system 
(11). For this purpose it suffices to show that
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The series which occurs in (25) converges since(cf.(22))
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The equality in (25) follows from the estimate
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The right side of (27) can be made arbitrarily small by first 
choosing n, then choosing Ni.

Uniqueness
In this section it will be shown that the infinite system (11) has 

at most one solution satisfying the initial conditions (12) and (13). 
We write (11) in the following way.
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Let Tj and Sj be solutions of (11) satisfying the initial conditions 
(12) and (13) i.e. Tj is the solution of (28) with q(t) being given by 
(30) and Sj is the solution of
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with the initial conditions
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If we multiply (28) by Sj and from the resulting equation, we 
substract(31) multiplied by Tj and integrate it from zero to infinity, 
we get, after integrating by parts
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where we have used the initial conditions (12),(13),(33),(34). 
According to Gel’fand and Levitan[9] there exists function K(t, x) 
having continuous partial derivatives of first and second order such 
that
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If we substitute (36) into (28),we find that the partial 
differential equation
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where c(t) = q(t) − p(t). Making change of variables and 
changing the order of integration in (44) we get
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The left hand side of (45) is a function of λ,whereas right hand 
side is a constant. The equality holds only when both sides are 
equal to zero. Thus
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With the initial condition (54), the solution of (52) is Vj = 0 from 
the semi-group theory. So we have the following theorem.

Theorem 2.The system of equations (11) have at most one 
solution satisfying the initial conditions (12) and (13).
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