Present-Absent Criteria Discrepancy and Large Lineups

Avraham Levi*

Department of Israeli Police, Jerusalem, Israel

*Corresponding author: Avraham Levi, Department of Israeli Police, Jerusalem, Israel

Received: April 01, 2019
Published: April 08, 2019

Abstract
This paper shows that from a practical point of view, large lineups can decrease mistaken identifications much more than Present-Absent Criteria Discrepancy.

Introduction
Smith et al. [1] found that by informing witnesses shown a show-up that if they did not identify the suspect as the target, they would be shown an additional show-up, that the rate of mistaken identifications decreased by half, while having a minimal effect on identifications. They concluded that witnesses, finding an imperfect fit between their memory of the target and someone who was not, unconsciously lowered the level of their criteria for choosing. They reasonably speculated that the same effect would be found for lineups rather than show-ups. The research has important theoretical implications. The question is whether the practical implications are nearly as significant. The decrease in mistaken identifications by half may also be found with lineups. However, pursuing his line of research ignores the fact that large lineup has the potential of decreasing mistaken identifications much more.

Levi [2-8] has experiments extensively with the 48-person lineup. With an average rate of mistaken choices of someone in target-absent lineups about 50%, the expected rate of mistaken identifications is 50/48≈1%. This is a much greater improvement than be expected from Smith et al. [1] results. There is a decrease in identifications, but not nearly to the same extent. Furthermore, Levi [9] found the same number of identifications in a 96-person lineup, where the expected rate of mistaken identifications was 50/96=0.52%. Would a lineup of 192 members, where the expected rate of mistaken identifications likely be 50/192=0.26% be even better, or would there be a falling off correct identifications? Of the other hand, would Smith et al. [1] method succeed in reducing mistaken choices in 96-person lineups to the same extent as found for show-ups? These are empirical questions worth exploring.

References