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Abstract
Designing, synthesizing, and applying electrochemical catalysts for the generation of ammonia (NH3) from electro-reduction 

nitrogen gas (N2) in the presence of water (H2O) is a very attractive research topic due to the extremal trend for green hydrogen 
utilization in the energy production sector. It became vital to be energy-free of CO2 in order to avoid elevating the earth’s temperature 
and the subsequent impacts. Therefore, generating ammonia via a direct electrochemical process under ambient conditions 
is the most promising and scalable green hydrogen storage technique. In this review, the challenges that face commercializing 
experimental results are reported, and the performance of new electrochemical catalysts is described. The conclusion discusses the 
most important technical issues which must be considered in future research.

Introduction
Ammonia (NH

3
) is one of the high-potential chemical storage 

for green hydrogen, its usual synthesis process from nitrogen (N
2
) 

and hydrogen (H
2
) depends intensively on the energy from non-

renewable sources. Ammonia plays an essential role in the evolu-
tion of the human population as nitrogen-based fertilizer creates. 
The Haber–Bosch procedure allows the production of nearly 150 
million metric tons of NH

3 [1], which is responsible for consuming 
about 1–2% of the average global energy [2,3]. Another process is 
the steam-methane re-forming method which consumes about 
5% of pure methane as a hydrogen source [4]. Consequently, this 
process alone is accountable for about 1.4% of CO

2 
emissions [5]. 

Hydrogen is considered as a future green energy resource; recently, 
many worldwide projects have been announced, and some of them 
have reached the production phase. There are many challenges and 
barriers in the generation of green hydrogen, including renewable  

 
electricity price, storage, and hydrogen transportation. Liquid am-
monia is considered a possible high-density energy carrier (22.5 MJ 
kg 1), at 8 bar and 22°C. However, synthesizing ammonia with avail-
able technology is unsustainable, and new technologies must be 
developed to overcome environmental concerns [6]. Electrochemi-
cal synthesis of ammonia is a promising solution as it can produce 
green NH3 in a flexible and scalable approach to take advantage of 
an intermittent overflow of electricity generated by renewables 
[7]. Figure 1 describes the general process of electrochemical syn-
theses of ammonia from N2 and H2O. The electrochemical creation 
of ammonia at room temperature and in low-pressure situations 
remains unreasonable at a scalable level, and various challenges 
should be tackled to further empower immediate electrolytic am-
monia synthesis. These challenges can be summarized as follows 
[8-12] (Figure 1).
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Figure 1: Illustrated diagram of a solid-state H+ conducting cell where NH3 is generated from H2O (steam) and N2. Reprinted 
with permission [12]. 

a) The reduction of nitrogen to ammonia competes with the hy-
drogen evolution reaction (HER), which requires lower energy 
than the nitrogen reaction because of stable tertiary covalent 
bonds in (N≡N) molecules.

b) The activation energy for HER is lower due to the polar nature 
of water molecules.

c) Hydrogen adsorption on the catalyst’s active sites easily occurs 
at a negative potential over nitrogen adsorption. Therefore, re-
combining adsorbed H on the catalyst surface is easy to gener-
ate H2 instead of ammonia production.

d) The major issue of electrosynthesis ammonia in an aqueous 
medium that the very weak solubility of nitrogen gas in an 
aqueous medium.

e) Finally, most catalyst surfaces are poisoned by favorably ad-
sorbing oxygen traces, which deactivates active catalyst sites.

Substantial efforts have been recently made to develop new 
strategies to overcome the mentioned challenges in direct electro-
chemical nitrogen reduction to ammonia in ambient conditions. In 
this review, the developments and efficiency of the electrocatalysts 
for the synthesis of ammonia from N2, and H2O, using renewable 
powers will be discussed focusing on the active sites, the rate of NH3 
production and faradaic efficiency (FE).

NH3 Electrocatalysts

The metallic catalysts are the most used for generating ammo-
nia. However, heterogeneous structures are critical to enhancing 
the reaction rate by increasing the selectivity of the surface for NH3 
generation. It has been observed that different electrolytes and 
electrode surface materials can lower thermodynamic conditions 
and enhance ammonia creation rate in several studies involving dif-
ferent electrolytes and electrode materials. Several compositional 
studies have been conducted for ammonia production with differ-
ent catalysts [13]. The development of an electrochemical cell, for 
the electrochemical reduction of atmospheric nitrogen and water 
into ammonia, is a challenging task [14].

Nobel Metals catalysts

Ruthenium (Ru) based catalysts are one of the most investigat-

ed surfaces for the synthesis of ammonia and they showed higher 
activity than the common iron catalysts [15]. Most of these investi-
gations were based on the usual method used for ammonia synthe-
sis from N

2 and H
2 under pressure and high temperature, a view 

studies were done using electrochemical reduction of the N2 pro-
cess in the presence of water as a source of hydrogen. In early work, 
an electrochemical cell for the synthesis of ammonia was developed 
using Ru as a cathode [16]. Only ammonia detected products from 
the electrochemical cell from electro- reduction of N2 at 90 °C and a 
potential of -1.10 V. The production rate of ammonia was very low 
(1.3 µg h-1m-1). The rate of ammonia generation was increased as 
the reduction potential value was increased until -1.02 V, and then 
it was decreased to a higher potential value.

Then Ru was used as single-metal sites, where it was distrib-
uted on the surface of zeolitic imidazolate framework (ZIF)-8. The 
formation rate of NH3 was 0.12 mg h-1 mg cat -1 and Faradaic ef-
ficiency reached 29.6% when loaded mass of Ru was 0.18% [17]. 
N-doped porous carbon was obtained from the UIO-66 precursor to 
encapsulate (Ru3+ and Ru0) [18]. The single atom of Ru electrocata-
lyst Ru@ZrO2/NC has enough active sites to reduce N2 and produce 
ammonia with a rate of 3.7 mg h- 1 mg-1 Ru when 0.1 wt% of the 
catalyst is Ru. The created catalyst exhibited high stability for 60 
hours as illustrated by Figures 1 & 2. When Pt was supplemented 
to the Ru, the RuPt alloy improved the performance of composite 
(RuPt/C) which dementated 13.2% of FE at 0.123 V and generation 
rate of NH3 was 3.0 × 10-7 mol h-1 cm-2 [19]. Au-NPs was the matrix 
for developing CB (7)– K2[B12H12]@Au [20]. The ability of K+ ion in 
limiting and inhibiting the HER lowering the rate determining step. 
Therefore, the rate of ammonia formation recorded high as 41.69 
μg h−1 mgcat.−1 and FE 29.53% at −0.4 V (vs. RHE).

Transition Metals catalysts

Transition metals have been investigated as active electrocat-
alysts. Molybdenum is another promising metal for electrochem-
ical reduction of N2 and it forms many compounds with different 
nonmetallic elements. New nanodots were prepared from molyb-
denum carbide and then inserted in ultrathin carbon nanosheets 
[21]. This catalyst shows very low FE (7.8%), and the production 
yield was only 11.3 µg h−1 mg−1 cat. Furthermore, MoS2 was utilized 
as electrochemical catalyst for generation NH3 from 0.1 M Na2SO4 
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where generation rate recorded (8.08 × 10−11 mol s−1 cm−1) at −0.5 V 
(vs. RHE). The developed catalyst shows good activity even in acidic 
solution [22]. MoS2 nanoflowers show higher FE compared with the 
previous work (8.34%) and higher NH3 yield of 29.28 µg h−1 mg−1 

Cat -0.40 V under same conditions [23]. MoN3 was immobilized at 
N-doped black phosphorus and applied to the electrochemical re-
duction of N2 under ambient conditions at 0.02 V [24].

The fabricated surface shown desorption free energy of NH3 is 
0.56 eV, Quantum dots (QD) were prepared from black phospho-
rus and the MnO2 nanosheets were immobilized at the surface of 

QD [25]. The performance of this catalyst demonstrated a forma-
tion rate of 25.3 µg h−1 mgcat.−1 with 6.7% FE at −0.5 V (vs RHE) in 
0.1 M Na2SO4 solution. Moreover, ZrO2 nanoparticles were examen 
for electrochemical reduction of N2 in water at ambient conditions 
[26]. The proposed catalyst enabled producing NH3 at a rate of 
24.74 μg h−1 mg−1cat. 0.1 M HCl with 5.0% FE at -0.45 V (vs RHE). 
Figure 2 illustrates the effect of applied potential on the production 
yield of NH3 and FE using ZrO2 nanoparticles as catalysts. Likewise, 
a perovskite oxide of (La0.8Cs0.2Fe0.8Ni0.2O3-δ) was prepared to be ap-
plied as an electrochemical catalyst for producing ammonia from 
wet air [27].

Figure 2: Average NH3 yields and FEs for ZrO2/CP at each given potential in 0.1 M HCl and inset TEM image of ZrO2 
nanoparticles. Reprinted with permission [26]. 

The formation rate of ammonia attained 1.23 × 10−6 mol s−1 m−2 
in 400 °C cell when wet N2 (3 mol% H2O) was introduced at 1.4 V. 
Another, Hematite nanostructure surface was developed and used 
for the electrochemical synthesis of ammonia at room temperature 
and low pressure [28]. The generation rate of NH3 reached 0.46 
μg h−1 cm−2 and FE of 6.04 % at −0.9 V (vs. Ag/AgCl) in 0.10 M KOH. 
The rate increased slightly after one hour and dropped by 63%.and 
FE was only 2.74 %. Indium-tin oxide glass (ITO/G) was used as 
electrochemical catalyst for formation NH3. The yield records 1.06 
× 10−10 mol s−1 cm−2 and FE 6.17% at –0.40 V (vs, RHE) in 0.5 M Li-
ClO4 [29] (Figure 2). Recently, the Density functional theory (DFT) 
calculation for the catalytic activity of Fe(100) was done to explore 
the ability and effect of dopant elements (Ru, Rh, Pd, Os, Ir, Pt) on 
the electronic properties of Fe(100) [30]. The results demonstrated 
that the hydrogenation step at Ir@Fe(100) was initiated at 0.342 eV 
with remarkably inhibited the H2 evolution.

Free metal catalysts

Synthesized black phosphorus nanosheets in zigzag and 
diff-zigzag edges assist selective electrochemical reduction of N2 
and the greatest NH3 producing rate was 31.37 μg h-1 mg-1 cat. at -0.7 
V [31]. A free metal, electrochemical carbon catalyst was doped by 
nitrogen, and the carbon microstructure was optimized. The de-
veloped catalyst exhibited excellent activity to the electrochemical 
reduction of N2, in 0.1 M KOH under ambient pressure [32]. The am-
monia yield rate of 3.4 × 10−6 mol cm−2 h−1 and an FE as maximum as 
10.2% at −0.3 V vs. RHE at room temperature. The formation rate 
reached 7.3 × 10−6 mol cm−2 h−1 when the temperature increased to 

60 °C. FeN4 moiety was inserted in the carbon framework, but it 
showed a decrease in the ammonia production rate at same con-
ductions. black phosphorus quantum dots (BPQDs) with the sup-
port of a conductive polymer nanofibrous membrane were tested 
for electrosynthesis of ammonia [33]. The yield of production in 0.1 
M Na2SO4 reached 1.91 × 10−10 mol s−1 cm−2 and FE 11.9%.

Conclusion
As a conclusion, the developed electrochemical catalysts for 

generation of ammonia and intensive research enlighten the rode 
for upscale and commercialized the electrosynthesis NH3 in closed 
future. However, the electrochemical catalysts developed for this 
purpose still fall short of expectations in terms of durability and 
Faradaic efficiency. Also, the production rate of ammonia is still 
very low, and the ability to suppress hydrogen reduction utilizing 
the same catalyst remains a real challenge. The impressive results 
are recorded via free metal catalysts as they reached more than 
10% FE and rate order in level 10−6 mol cm−2 h−1. This demonstrates 
the ability of creating catalysts from low prices precursors and safe 
the unabundant noble metals. Also, single atom- based catalysts 
improve the FE and production rate but the stability and reducing 
posing surface rate need more creative technic. Ru remains a 
desirable electrocatalyst for electrochemical generation of NH3 
even its high price as it offers more than 29.6% FE and excellent 
production rate. More research work can be done to improve and 
develop electrochemical catalysts for green hydrogen storage in the 
form of ammonia.
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