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Introduction
South Africa is the third dominant consumer of soybean in the 

world [1]. Mpumalanga, KwaZulu Natal and Free State provinces 
are the largest soybean producers in the country [2]. Over the last 
decade, soybean production and consumption in South Africa has 
increased [1,3]. Currently, soybean production does not meet South 
African local demands [3]. As a result, South Africa imports large 
quantities of soybean products [3]. Attaining higher yields entails 
increasing the area planted and/or use of more fertilisers [4]. 
Production in both approaches requires constant crop monitoring  

 
using reliable techniques that can provide real-time statistics. 
Constant monitoring of crops can enhance chances of attaining 
higher yield through early detection of problems that can potentially 
affect yield. Soybean yield information in the hands of farmers 
and policy makers is important for decisions such as planning for 
harvesting, yield management and market related decisions [5]. 
Thus, there is a need for an efficient real-time monitoring system to 
provide the status, growth and development of soybean information 
consistently that can enable yield predictions.
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Abstract
Yield predictions allow for decision making regarding management of agricultural yield before and after harvest by government 

and decision-makers. Traditional approaches to collect yield statistics such as manual field surveys and physical computation of 
yield are costly and take a long time for information to be available. Remote sensing platforms such as hyperspectral data provide 
real-time, fast, and reliable statistics that can be used to derive yield information. Vegetation indices are ratios used to combine 
multiple band observations of the hyperspectral data into one index and applied to derive soybean grain yield. The objective of this 
study was to evaluate the potential of vegetation indices derived from hyperspectral data to predict soybean grain yield. Soybean 
hyperspectral data was acquired using a handheld spectroradiometer with a spectral range of 350 to 2500 nm in March and April of 
the summer season of 2017. The random forest regression algorithm was used to predict the soybean grain yield. NDVI, SR and EVI 
were calculated from the hyperspectral data for all probable bands situated in the 400 nm and 2399 regions. The results showed 
that relevant wavelengths in predicting soybean were combinations situated in the red-edge (680-750 nm), NIR and the MIR (1300 
to 2399 nm) of the electromagnetic spectrum. Furthermore, regression results showed that SR better predicted the soybean grain 
yield (R2 = 0.843) compared to NDVI (R2 = 0.841) and EVI (R2= 0.537). In overall, the results of this study suggest that narrow-band 
indices have the potential to predict soybean grain yield.
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Various methods have been used to predict grain crop yields 
and these include the use of agricultural censuses, field surveys [6] 
and physical computation of yields by visiting numerous sample 
areas [7]. In South Africa, current yield predictions are based 
upon field surveys conducted telephonically, via emails, and or by 
post FAO [8]. However prediction methods based on traditional 
crop yields surveys are frequently subjective, susceptible to large 
inaccuracies and take a long time for information to be available for 
the benefit of food security and early planning before and during 
harvests [5]. In addition, yield predictions obtained influence 
the pricing of agricultural commodities and the decisions to be 
taken regarding imports and exports [8]. This therefore validates 
the need for crop monitoring initiatives that involve the use of 
reliable techniques such as remote sensing to ensure fair pricing 
of agricultural commodities and objective decision-making. Remote 
sensing methods are suitable; they include the acquisition of crop 
canopy measurements [9], and can deliver immediate, reliable, 
measurable evaluations of the ability of plants to capture radiation 
and photosynthesize [10]. These canopy spectral measurements 
are beneficial for estimating crop yield [9]. Research shows that 
remote sensing spectral bands have strong relationships with 
vegetation biomass [11].

Many researchers have used broadband multispectral data to 
predict yield of various crops such as maize [12], rice [5], soybean 
[10] and wheat [13,14]. Broadband multispectral data have 
advantages as it is applicable to regional areas and also because 
of numerous revisits of the same area as well as capturing data 
at large spatial scales in real-time [15]. In addition, multispectral 
data is available at low or no cost, which can be beneficial to 
countries with limited resources [15]. Despite these advantages, 
broadband data has drawbacks for vegetation observation such 
as exhibiting excessive spectral differences and shadows due to 
the above-ground coverage and landscape [11]. The latter can be a 
hindrance in producing precise biomass prediction models with the 
ability to distinguish between soil background and vegetation [11]. 
Precise biomass predictions are essential for effective monitoring 
and management of vegetation [11]. Furthermore, broadband 
data does not have specific narrow-bands that precisely focus on 
biochemical and biophysical factors of crops [16,17]. This suggests 
that multispectral broadband data exhibit difficulties in monitoring

 crops with high biomass such as soybean. Although 
multispectral broadband data have these disadvantages, research 
has shown that these disadvantages can be overcome by the use 
of vegetation indices [18]. Vegetation indices eliminate differences 
caused by soil background, above-ground geometry, sun view 
angles as well as the influence of atmospheric circumstances 
when assessing biophysical characteristics of vegetation at above-
ground scale [18]. Widely used vegetation indices for vegetation 
monitoring and modelling are calculated using the red and the near 
infrared (NIR) bands [19]. The red and NIR bands respond to the 
biochemical and biophysical properties of crops [16,19]. These 

spectral bands are sensitive to the rate of photosynthetic activity 
in green vegetation [20]. The Normalised Difference Vegetation 
Index (NDVI) [21] and Simple Ratio (SR) [22] are commonly 
utilised indices that are calculated using the NIR and the red bands 
[20] with applications for crop monitoring. Soybean has been 
monitored using NDVI modelled from broadband data sets such 
as AVHRR/NOAA [23,24] and ADAR 5500 4 band digital camera 
with a broadband width of 450 nm to 90 nm [25]. [26] used SR, 
NDVI, Soil Adjusted Vegetation Index (SAVI) and Transformed SAVI 
(TSAVI) to evaluate soybean biophysical properties such as yield, 
photosynthetically active radiation (PAR), leaf area index (LAI) and 
biomass [26]. Also, the SR index is known to be able to decrease 
the effect of soil background on the spectral reflectance and is also 
sensitive to changes occurring at prime developmental phases of 
vegetation [27]. The Enhanced Vegetation Index (EVI) is another 
widely used vegetation index in agricultural forecasting computed 
using the red and NIR bands with an addition of the blue band [28]. 
However, the EVI is insensitive to saturation when faced with high 
biomass vegetation [29]. Despite the usefulness of these spectral 
bands, broadband data is unresponsive to the variation in plant 
features [15].

Due to disadvantages encountered by broadband data, 
researchers promote the use of hyperspectral data that covers the 
whole range of the electromagnetic spectrum instead of just two 
or three bands [18]. Hyperspectral data provide advantages of 
handiness, flexibility, controllability and high temporal resolution, 
which are greatly beneficial in precision agriculture applications as 
opposed to satellite based platforms [30]. Also, hyperspectral data 
contains other important spectral bands such as the red edge bands 
that are useful in the study of vegetation [18]. The red edge band 
is highly responsive to variations in biomass of green vegetation 
[18]. Narrow bands are important for supplying more information 
with substantial enhancements compared to broad bands in 
enumerating biophysical properties of agricultural crops [17,31]. 
Also, hyperspectral data is important for modelling yield features of 
agricultural crops [17] such as chlorophyll content, photosynthetic 
activities and leaf structure [32]. Numerous researchers have used 
hyperspectral data for vegetation monitoring such as [17,18,31] 
with positive results. Mutanga and Skidmore [18] calculated NDVI 
from hyperspectral data and obtained that regular NDVI including 
strong chlorophyll absorption bands in the red region and NIR 
region inadequately predicted biomass (R2=0.26). Whereas, the 
modified NDVI (MNDVI) that included bands in the range (700- 
750 nm) and narrow-bands in the red-edge region (750-780 nm) 
showed a high predictive ability for biomass (R2=0.77). Mariotto et 
al. [18] identified that important bands when modelling biophysical

 properties of maize, wheat, cotton, rice and alfafa, (about 74% 
of them) are situated in the 1051-2331 nm regions. The remaining 
30% of these bands are in the 970 nm region (10%), red-edge region 
(6%) and the visible region (10%) (Blue region (400-500nm), green 
region (501-600 nm) and NIR region (760-900 nm). Thenkabail et 
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al. [31] concluded that stronger correlations with crop biophysical 
characteristics were situated in the red region (650-700 nm), 
shorter wavelengths of the green region (500-550 nm), the NIR 
region (900-940nm) and in the moisture sensitive area centred at 
982 nm. Similarly, many researchers have used hyperspectral data 
to predict yield of agricultural crops such as lint [33], wheat [34], 
maize [35] and soybean [21]. However, for soybean [21] utilised 
spectral data acquired using a multispectral hand-held radiometer 
with a fewer number of bands. They obtained positive correlation 
between NDVI and soybean grain yield (R2= 0.80). Research has 
shown that hyperspectral data has enabled estimation of yield of 
various crops and biomass of several vegetation types. However, 
soybean grain yield has not been predicted comprehensively using 
hyperspectral data in the spectral range of 400-2399 nm.

Hyperspectral data has however some limitations, such as 
those related to high dimensionality and redundancy [36] and the 
problem of multicollinearity [37]. As a result, identifying suitable 
bands for modelling is a challenging process. To overcome this 
problem researchers encourage the use of advanced statistical 
methods such as random forest (RF) regression algorithm [11]. 
Random forest is a regression algorithm that applies bootstrapping 
aggregation to create a group of trees based on the randomness 
of samples taken from the training data [38]. The random forest 
algorithm is known to be able to handle the high dimensionality 
of hyperspectral data and reduce data redundancy [37]. Also, 
random forest has been noted to perform better than other 
machine learning algorithms such as support vector machine and 

neural network because of its robustness against overfitting [11, 
38-41]. The aim of this study was to evaluate the performance of 
narrow-band vegetation indices NDVI, SR and EVI derived from 
hyperspectral data in predicting soybean grain yield. The vegetation 
indices selected for the study are those frequently used for biomass 
or agricultural crop and ecological vegetation studies [18] and 
have been applied successfully in predicting other crops. The main 
objective of this study is to assess the relationships of narrow-band 
NDVI, SR and EVI to soybean grain yield. The second objective was 
to identify suitable narrow-band indices to predict soybean grain 
yield. The third objective was to compare the performance of NDVI, 
SR and EVI random forest models developed from narrow bands 
(400 nm to 2399 nm) in predicting soybean grain yield.

Materials and Methods
Study Sites

The research was conducted on two experimental farms 
located in the Free State Province of South Africa in Phuthaditjhaba 
(28°25’26”S and 28°56’12”E) and in the Mpumalanga province in 
Ermelo (26° 45’18” S and 30° 13’55” E) (Figure 1). The Free State 
and Mpumalanga provinces experience warm summers with high 
rainfall and cold winters. Both these areas receive approximately 
625 mm of precipitation annually with most precipitation 
occurring in summer (October - March). The soil in Phuthaditjhaba 
can be characterised as “rich loam” type of soil [42] while the soil 
in Ermelo can be characterised as “low clay” [43] and sandy soil.

Figure 1: Map showing the location of the study sites in Free State (FS) and Mpumalanga (MP) provinces.

Experimental Setup

The experiment on both sites followed a split plot Randomized 
Complete Block Design (RCBD) method. In the two study sites, 72 
experimental plots each with a size of 7 m length and 3 m width 

were used. The plots consisted of 7 rows with 60 cm row spacing. 
Three soybean cultivars from Pannar seeds (PANN 1500 R, PANN 
1614 R and PANN 1664 R) were sown from the 13th to 15th December 
2016 in the MP and from 19th to 21st of December 2016 in FS site. 
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Fertilizer treatments of 0 kg, 30 kg and 60 kg of phosphorus (P) 
were applied to the plots to provide more nutrients and enhance 
the health of the soybean plants. The experiment consisted of three 
replicates and the soybean relied on rainwater for irrigation.

Field Spectral Measurements

The first set of field spectral measurements in Mpumalanga and 
Free State were taken in March 2017 and the second set of spectral 
measurements were taken in April 2017. During this period, the 
soybean had reached maximum canopy cover whereby the soil 
background could have little effect on the spectral measurements. 
Due to differences in planting date, the soybean in Mpumalanga 
was in the pod formation stage during the first visit while in the 
Free State site it was still flowering. Canopy spectral measurements 
were acquired during flowering, pod formation and seed filling 
stages randomly plot by plot across fertilizer treatments of 0 kg, 
30 kg and 60 kg. An Analytical Spectral Device (ASD) Field Spec®3 
optical sensor (Analytical Spectral Devices, Inc., Boulder, CO, USA) 
was used to take spectral measurements from 10:00 am to 14:00 
pm local time (GMT+2). The spectroradiometer records wavelength 

ranging from 350 to 2500 nm, measuring radiation at 1.4 nm 
bandwidths for the spectral region of 350-1000 nm and registers 
2 nm intervals for the spectral region of 1001-2500 nm [44]. The 
spectral measurements

 were taken under cloud free conditions. In each plot, 5 spectral 
measurements were taken with the optical cable connected to the 
spectroradiometer held at about 30 cm above the soybean canopy. 
Every 10 to 15 minutes a white reference spectralon calibration 
panel was used to balance any changes in the atmosphere and 
irradiance of the sun. The spectral measurements were added 
together to obtain the medial spectral measurements for each plot. 
Figure 2 shows average spectral reflectance of soybean at flowering, 
pod formation and seed filling stages. The spectral reflectance 
curve indicates the amount of radiation absorbed and reflected by 
the soybean at different regions of the spectrum. For soybean, the 
flowering and pod formation stages are critical stages in which the 
soybean utilises the absorbed radiation to photosynthesise and 
form grains [45]. A higher spectral signature is an indicator of a 
healthy crop in which higher yield can be expected whereas a low 
spectral signature indicates a lower yield [45].

Figure 2: Average spectral curves of soybean canopies at flowering, pod formation and seed filling stages.

Soybean Yield Data

To obtain soybean grain yield data, the soybean pods were 
harvested from the middle 3 rows of each plot at the end of the 
growing season of May and June 2017. The soybean pods were then 
crushed to obtain the soybean grains. The soybean grains obtained 
from each plot were weighed using the LBK1 weighing scale from 
ADAM Equipment [46]. The grains measurements of specific plots 
for each site were added to obtain the total yield of the soybean of 
each site.

Data analysiss
448 Bands allocated from 350 to 399 nm, 1350 to 1450 nm, 

1800 to 1950 nm and 2400 to 2500 nm were omitted from the 

analysis due to atmospheric water absorption and the effect of noise 
in the reflectance spectra following techniques outlined in [11,36]. 
The remaining 1702 narrow-bands situated between 400 nm and 
2399 nm were used to compute the narrow-band indices.The NDVI, 
SR and EVI indices were calculated using the standard indices 
equations [22, 28,47] (Table 1). These indices were calculated 
from all probable two-bands combinations including 1702 narrow 
bands situated between 400 and 2399 nm [11,18,19]. The narrow 
bands are presented as λ₁ (400-2399 nm) and λ₂ (400-2399 nm) 
combinations following approaches outlined in [18]. The calculated 
vegetation indices were correlated to the soybean yield using the 
Spearman’s correlation coefficient [2]. The correlations between 
vegetation indices and soybean grain yield were calculated to 
assess their relationship.
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Table 1: Vegetation indices computed from the λ₁ (400-2399 nm) 
and λ₂ (400-2399 nm) combinations.

Index Name Abbreviation Formula Reference

Normalized 
Difference Vegetation 

Index
NDVI λ₁ − λ₂ 𝑁𝐷𝑉𝐼 

= λ₁ + λ₂ (Rouse, 1974)

Simple Ratio SR λ₁ 𝑆𝑅 = 𝜆₂ (Jordan, 
1969)

Enhanced Vegetation 
Index EVI

N − R  
𝐸𝑉𝐼 = G 

N + C₁R − 
C₂B + L

(Huete et al., 
1994)

Assessing the Differences in Yields between Study Sites 
and Fertilizer Treatments

Exploratory data analysis was performed to understand the data 
before any statistical analysis was done. The statistical analysis was 
performed in STATISTICA 13 software testing for normalcy of the 
data using Lilliefors test [48]. Furthermore, an analysis of variance 
was performed to determine if there were differences in soybean 
grain yield means between the two study sites and between the 
three fertilizer treatments.

Statistical Analysis Using the Random forest (RF) 
Regression

The random forest regression technique was used to predict 
the soybean grain yield. RF is a machine learning algorithm 
developed by Breiman [49] that applies a bootstrap aggregation 
method in which an ensemble of trees (ntree) are developed on 
the basis of the randomness of samples extracted from the training 
data. For regression, the random forest permits trees to grow to the 
highest magnitude without trimming, depending on the bootstrap 
sample from the training data [49]. At every tree, the RF grows a 
randomized subgroup of predictors (mtry) to identify the optimum 
split at every node of the tree [41]. At the end, the RF averages the 
outcome of the overall sum of trees in order to obtain the overall 
estimation [50]. From the bootstrap samples of the training data 
(2/3), each tree grows randomly and selected independently. The 
residual original data (1/3) of the excluded samples (called out-
of-bag (OOB)) are then used to validate the model and predict 
variables of importance [51,52].

RF requires two parameters to be tuned that are (i) (ntree) the 
number of trees to grow and (ii) (mtry) the number of variables 
that are split at each node [41]. The ntree and the mtry parameters 
(vegetation indices) were then optimized for the random forest 
model using the top 20 NDVI, SR and EVI data sets to determine the 
best index that can be used to predict soybean grain yield. The mtry 
was calculated for all probable band combinations while the ntree 
was evaluated at 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 

4500, and 5000 trees. The random forest model was developed 
from 70% (2/3) of the training data to build a model that can predict 
soybean grain yield (g/m2) and 30% (1/3) of the test data was 
used to validate the model (OOB). Important indices at predicting 
soybean grain yield were selected by the RF using the permutation 
variable importance measures (mean decrease in accuracy). The RF 
algorithm was implemented using the R statistical software using 
the random Forest built in package to predict the soybean grain 
yield (Liaw and Wiener, 2002).

Variable Importance Selection

Random forest calculates variable importance using the Gini 
index and the permutation variable importance measures [53]. 
The permutation variable importance measure is defined as the 
variation between the OOB error from the data set acquired by 
random selection of the predictor variables and the OOB error 
from the original data set [53]. While the Gini index variable 
importance is a measure used in a classification when growing 
trees in the random forest [54]. The permutation variable 
importance measure is the most preferred measure of importance 
as it assesses importance of variables using the mean decrease in 
accuracy in the OOB predictions as forests are being assembled 
[53]. Permutation variable importance predicts the importance of 
a variable by determining how much prediction error rises when a 
variable is selected while others remain the same [55,56]. For this 
study, the permutation variable importance was used to determine 
the combination of indices that were powerful than the others 
in predicting soybean grain yield. From the ranking of the mean 
decrease in accuracy, the top 3 important combinations of indices 
were selected.

Accuracy Assessment

When using the random forest, research has shown that 
there is no need for a different test data for validation because 
the random forest uses an OOB error prediction built internally 
[37,38,50,57,58]. This is particularly remarkable in situations 
where data acquisition is highly dependent on oscillating weather 
conditions. The random forest computes the OOB error as a result 
of variance between the estimation made using the training 
data set and the OOB data set [41,59]. OOB error produces an 
unbiased evaluation of the prediction accuracy of the model [40]. 
The coefficient of determination (R2) and root mean square error 
(RMSE) were reported on the assessment of the accuracy of the 
random forest models. RMSE was calculated using the formula 
below:

2( )Yi Y
RMSE

n

∧

−
= ∑

where Ŷ and Y are measured and predicted soybean grain yield 
respectively.
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Results
Assessing the Differences in Soybean Yields between 
Study Sites and Fertilizer Treatments

Exploratory statistics showed that soybean grain yield data 

does not significantly deviate away from a normal distribution for 
both sites (Figure 3) and thus meets the assumptions of ANOVA. 
Analysis of variance results showed that there were significant 
differences between the soybean grain yield in Free State and

Figure 3: Descriptive statistics of soybean grain yields for FS (a) and MP (b) sites.
 

Mpumalanga provinces (p≤0.05). However, the results showed 
no significant differences in soybean grain yield between fertilizer 
treatments on the study sites (p≥0.05). The total soybean grain 
yield obtained in FS was 72816 g/m2 with an average of 1011.3 g/

m2 per field while the total soybean grain yield in MP was 156060 
g/m2 with an average of 2167.5 g/m2 per field. In total, the soybean 
grain yield of both sites was 228876 g/m2 with an average of 1589.4 
g/m2.

Narrow-Band NDVI and SR Relationship to Soybean Grain Yield

Table 2: Top 20 narrow band NDVI indices (λ=30 nm) that produced the highest correlation coefficients with soybean grain yield.

Ranking Wavelength (nm) Wavelength (nm) R-values P-values

1 1806 2107 0.688 0.000

2 1806 2137 0.655 0.000

3 2377 2077 0.633 0.001

4 1806 2167 0.619 0.001

5 715 1536 0.618 0.001

6 1806 2317 0.617 0.001

7 1806 1476 0.616 0.001

8 2347 2107 0.613 0.002

9 1806 2287 0.605 0.002

10 475 2047 0.602 0.002

11 445 2077 0.602 0.002

12 715 1566 0.601 0.002

13 475 2077 0.601 0.002

14 715 1506 0.600 0.002

15 445 2107 0.598 0.002

16 475 2107 0.596 0.002

17 475 2017 0.595 0.002

18 445 2047 0.595 0.002

19 445 2017 0.588 0.006

20 715 1596 0.588 0.006
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Narrow-band NDVI and SR were computed for all probable 
two-band combinations in the spectral range 400 nm to 2399 nm. 
Spearman’s correlation coefficients were applied to assess the 
relationships of the narrow-band NDVI and SR to soybean yields. 

The NDVI and SR obtained identical results of the correlations to 
the soybean grain yield (Tables 2 & 3). The correlation coefficients 
(R) results obtained between NDVI/SR and soybean grain yield 
ranged from 0.00 to 0.68 shown in Tables 2 & 3.

Table 3: Top 20 narrow band SR indices (λ=30 nm) that produced the highest correlation coefficients with soybean grain yield.

Ranking Wavelength (nm) Wavelength (nm) R-values P-values

1 1806 2107 0.688 0.000

2 1806 2137 0.655 0.000

3 2377 2077 0.633 0.001

4 1806 2167 0.619 0.001

5 715 1536 0.618 0.001

6 1806 2317 0.617 0.001

7 1806 1476 0.616 0.001

8 2347 2107 0.613 0.002

9 1806 2287 0.605 0.002

10 475 2047 0.602 0.002

11 445 2077 0.602 0.002

12 715 1566 0.601 0.002

13 475 2077 0.601 0.002

14 715 1506 0.600 0.002

15 445 2107 0.598 0.002

16 475 2107 0.596 0.002

17 475 2017 0.595 0.002

18 445 2047 0.595 0.002

19 445 2017 0.588 0.006

20 715 1596 0.588 0.006

Figures 4 & 5 depict a graphical presentation of the R-values 
for the relationship between soybean grain yield and NDVI and 
SR. These results show a moderate to strong relationship between 
NDVI/SR and the soybean grain yield (R-values from 0.588 to 
0.688). In addition, the p-vales obtained for these results indicate 
that the relationships between soybean grain yield and the 

derived vegetation indices are significant as they are less that 0.05. 
Correlation coefficients of NDVI and SR were arranged in the order 
of the highest to the lowest and the top 20 R-values. The top 20 best 
NDVI/SR indices are situated in the blue (445 nm - 475 nm), red-
edge (715 nm) and in the MIR regions (1506 nm – 2377 nm) of the 
electromagnetic spectrum (Figures 4 & 5).

Figure 4: Heat map showing the correlation coefficients (R) between soybean grain yield and narrow band NDV acquired from 
all probable band combinations from the spectral range of 400 nm to 2399 nm.
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Figure 5: Heat map showing the correlation coefficients (R) between soybean grain yield and narrow band SR acquired from 
all probable band combinations from the spectral range of 400 nm to 2399 nm.

Narrow-Band EVI Relationship to Soybean Grain Yield

Narrow-band EVI was computed from all probable band 
combinations in the spectral range of 400 to 2399 nm of the 
electromagnetic spectrum. Spearman’s correlation coefficients 
were calculated to assess the relationship between the EVI indices 
and the soybean grain yields. The correlation coefficient results 
of EVI indices ranged from 0.00 and 0.761. The relationship 

between soybean grain yield and the derived narrow- band EVI 
are significant as shown by the p-values less than 0.05 in Table 4. 
Correlation coefficients of the narrow-band EVI were ranked from 
the highest to the lowest and the top 20 best indices were selected 
and shown in Table 4. The best 20 EVIs are situated in the blue 
region (405 nm – 425 nm), red region (695 nm), red-edge ((705 
nm- 735 nm) NIR (1245 nm) and the MIR (2357 nm– 2397 nm) 
regions of the electromagnetic spectrum.

Table 4: Top 20 narrow-band EVI indices (λ= 10 nm) that produced the highest correlation coefficients with soybean grain yield.

Ranking Wavelength (nm) Wavelength (nm) Wavelength (nm) R-values P-values

1 2397 2357 705 0.761 0.00005

2 2387 2367 705 0.760 0.00005

3 2397 2367 705 0.757 0.00005

4 405 2357 705 0.757 0.00005

5 2387 2357 705 0.756 0.00005

6 2387 2357 695 0.752 0.00005

7 2397 2347 705 0.751 0.00006

8 405 2347 705 0.751 0.00006

9 415 2357 705 0.751 0.00006

10 415 2367 705 0.750 0.00007

11 415 2347 705 0.750 0.00007

12 2387 2347 705 0.749 0.00007

13 2397 2377 705 0.749 0.00007

14 405 2367 705 0.749 0.00007

15 2377 2357 695 0.748 0.00007

16 2377 2357 705 0.748 0.00007

17 425 2347 705 0.748 0.00007

18 425 2357 705 0.747 0.00007

19 735 1245 1325 0.746 0.00008

20 725 1245 1325 0.745 0.00008
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Optimization of the Random Forest Regression Models

For the three indices (NDVI, SR and EVI), the ntree and mtry 
values were optimized using the training dataset to identify values 
that best predicted soybean grain yield. For each index, ntree values 

from 500 to 5000 were tested and mtry was tested from 1 to 20 
(Figure 6). The mtry and ntree values that produced the best RMSE 
were selected. According to the results (Figure 2), the best mtry for 
the NDVI and SR models were 10 and 5 and their ntree was 500 
respectively. For EVI, the best mtry was 7 and the ntree was 1000.

Figure 6: Optimization of random forest parameters (ntree (N) and mtry) using RMSE.

Variable Importance of Narrow-Band Indices in 
Predicting Soybean Grain Yield Using the RF

From the best 20 selected indices that were highly correlated 
with the soybean grain yield, it was essential to categorize narrow-
band indices of NDVI, SR and EVI that would highly perform when 
predicting soybean grain yield (g/m2). The RF calculated variable 
importance using the mean decrease in accuracy to measure the 
importance of NDVI, SR and EVI at predicting soybean grain yield 
(g/m2). The RF algorithm was capable of ranking the NDVI (Figure 
7a), SR (Figure 7b) and EVI (Figure 7c) indices according to their 
importance in predicting soybean grain yield.

Using the mean decrease in accuracy arrangement, top 3 
wavelength combinations that had significant importance in 
predicting the soybean grain yield were selected. For NDVI, top 3 
band combinations included: 

(i) 2197 nm and 1806 nm, 

(ii) 2137 nm and 1806 nm and

(iii) 1506 nm and 715 nm. similarly,

SR top 3 important wavelength combinations include

(i) 1806 nm and 2107 nm, 

(ii) 1806 nm and 2137 nm and 

(iii) 1806 nm and 2167 nm. In addition,

EVI top three significant wavelengths included 

(i) 1245 nm, 735 nm and 1325 nm, 

(ii) 2377 nm, 2397 nm and 705 nm and 

(iii) 1245 nm, 725 nm and 1325 nm.
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Figure 7: Mean Decrease in Accuracy (%) of NDVI (a), SR (b) and EVI (c) concluded by the random forest algorithm. Important 
variables ranked are those with the highest mean decrease accuracy.

Accuracy Assessment

Figure 8: Random Forest models (NDVI (a), SR (b) and EVI (c)) showing sensitivity of ntree to the OOB error.

Figure 8 shows the best ntree results of the RF models for 
NDVI (a), SR (b) and EVI (c). This indicates that for NDVI and 
SR, the models obtained accuracy at 500 trees and at 1000 trees 
for EVI. The coefficient of determination (R2) and Root Mean 

Square Error (RMSE) were statistical measures that were used to 
evaluate the predictive performance and accuracy of the random 
forest regression models (NDVI, SR and EVI). Table 5, shows the 
performance results of the random forest prediction models. The 
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results show that SR obtained the highest R2 of 0.843 with a RMSE 
of SR= 423.94 and RMSE of NDVI=422.84 (26.11% of the average 
soybean grain yield) compared to NDVI that obtained R2=0.841 
with an RMSE of 423.94 (26.04% of the average soybean grain 
yield) and EVI (R2= 0.578) (37.04% of the average soybean grain 
yield) and RMSE of 615.94. These results suggest that SR can better 
predict soybean, however NDVI obtained better accuracy in the 
prediction in comparison to SR and EVI.

Table 5: Predictive performance of the NDVI, SR and EVI 
random forest prediction models using top 20 best indices.

Narrow-band 
Vegetation Indices

Correlation between 
actual and predicted 

yield (R2)
RMSE (g/m2)

NDVI 0.841 422.84

SR 0.843 423.94

EVI 0.578 615.69

Discussion
The aim of the study was to evaluate the potential of narrow-

band indices (NDVI, SR and EVI) in predicting soybean grain yield 
(g/m2). Broadly, the results of this study demonstrated that narrow-
band situated in the blue, red, red edge and MIR regions have a 
potential to predict soybean grain yield. The objectives were to 
assess the relationships of the narrow-band indices to the soybean 
grain yield, identify suitable narrow- band indices to predict 
soybean and to compare the accuracy of the prediction models. The 
study further showed that important bands in predicting soybean 
grain yield are not only bands in the NIR and red regions but also 
bands situated in the MIR region.

Assessment of the Relationships of Narrow-Band Indices 
to Soybean Grain Yield

The R-values obtained for NDVI (0.00-0.688), SR (0.00-0.688) 
and EVI (0.00-0.761) showed that different combinations of 
bands respond differently to variations in soybean grain yield. 
As shown in Tables 2-4, strong correlations to the soybean grain 
yield did not only consist of combinations of bands in the red 
and NIR regions. Strongly correlated indices of NDVI, SR and EVI 
to soybean consisted of combinations of bands in the blue region 
(405 nm - 475 nm), red region (695 nm), red edge (705-735 nm), 
NIR (1245 nm) and the MIR regions (1325 nm -2397 nm). These 
results correspond with those reported by Mutanga and Skidmore 
[18], which suggested that information on vegetation biomass is 
not only limited in the red and NIR bands. As a result, NDVI, SR and 
EVI highest correlations mainly consisted of combinations of bands 
in the MIR (1300-2399 nm) and combinations of the blue (400-
500 nm) bands and red-edge (700-729 nm) bands. The MIR region 
is known to be sensitive to water content of leaves and has low 
reflectance [32]. However, for this study, most MIR bands showed 
strong sensitivity to biochemical factors found in soybean such as 
nitrogen, protein as well as oil [32]. Similarly, wavelengths in the 

blue region are highly sensitive to chlorophyll a and b since plants 
absorb the violet-blue light for photosynthesis [32]. Based on 
these results it is understandable that combinations of these bands 
would obtain the highest correlation to the soybean grain yield. 
These results also concur with those reported by Darvishzadeh et 
al. [60,17]. Darvishzadeh et al. [60], showed that bands in the MIR 
had the strongest relationship to leaf area index (LAI) compared 
to the red and NIR bands. Mariotto et al. [17], reported that about 
74% of bands sensitive to biophysical properties were situated 
in the MIR (1051 to 2331 nm). Additionally, the red-edge band is 
characterised by high reflectance and is linked to differences in the 
chlorophyll content that is associated with biomass of vegetation 
[18,32]. It is reasonable that combinations of wavelengths including 
the red- edge would obtain a strong relationship to soybean grain 
yield. Generally, these results provided more understanding of 
the relationship of the soybean grain yield and its significant 
wavelength regions. Furthermore, the results showed that 
important information on soybean yield is mostly contained in the 
MIR (1300 to 2399 nm) and indicate that narrow-bands have the 
potential to predict soybean grain yield.

Variable Importance and Assessment of the Predictive 
Performance of the NDVI, SR and EVI Random Forest 
Models

In the top 20 selected indices that had a strong relationship 
to soybean grain yield, it was necessary to identify which of those 
were significant in the prediction of soybean grain yield. The 
random forest used the mean decrease in accuracy measures to 
identify combinations of bands that are most significant in the 
prediction of soybean grain yield. The results of the optimization 
of the random forest showed that 10, 5, and 7 indices (NDVI, SR 
and EVI) out of 20 indices (predictors) at 500 and 1000 ntrees 
were significant at predicting soybean grain yield. These results 
further demonstrated that accuracy of the prediction was obtained 
with a smaller number of trees (ntree=500) compared to a larger 
number of trees (ntree = 1000). These results were validated by the 
differences in RMSE of 423.94 at 500 ntree compared to the RMSE 
= 615.69 at 1000 ntree. The obtained results concur with those of 
Abdel-Rahman et al. [41] who suggested that fewer number of trees 
(ntree) results in lower RMSE, which indicates better accuracy. The 
R2 results of the NDVI, SR and EVI random forest models showed 
that SR obtained the highest R2 in predicting soybean grain yield. 
These results indicate that, compared to the NDVI and EVI, SR is 
a better index at predicting soybean grain yield. These findings 
are similar to those obtained by Mutanga and Skidmore [18] who 
in their study concluded that SR (R2=0.80) was a better index at 
predicting biomass in dense canopies than NDVI and Transformed 
Vegetation Index (TVI). Higher performance of SR could be because 
of its high sensitivity to high biomass as compared to NDVI which 
saturates when faced with high biomass [61,62]. Although the SR 
obtained the highest R2, the NDVI obtained the lowest RMSE of 
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422.84 compared to SR (RMSE=423.94) and EVI (RMSE=615.69). 
These findings indicate that NDVI has better accuracy at predicting 
soybean yield since a lower RMSE indicates better accuracy. In 
conclusion, these results suggest that both the SR and NDVI can 
accurately predict soybean grain yield.

Conclusion
This study shows the success of narrow-band indices in 

predicting soybean grain yield. The results have shown that 
important narrow-bands in predicting soybean grain yield are not 
only combinations of bands situated in the red (695 nm) and the 
NIR (1245 nm) regions but are also combinations of bands found in 
the blue region (405 nm - 475 nm), red edge (705 nm -735 nm) and 
the MIR regions (1325 nm -2397) nm. Furthermore, the SR index 
(R2 = 0.843) proved to be a better index in predicting soybean grain 
yield compared to the NDVI (R2 = 0.841) and EVI (R2 = 0.578). 
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