
405Copyright © All rights are reserved by Ayse Arslan.

Current Trends in Computer
Sciences & Applications

Review Article

Exploring LLM-based Agents: An Architectural
Overview

Ayse Arslan*
Department of Computer Science, Oxford Alumni, of Northern California

*Corresponding author: Ayse Arslan, Department of Computer Science, Oxford Alumni of Northern California, Oxford Alumni, of
Northern California

Received: May 09, 2024 Published: June 25, 2024

ISSN: 2643-6744

DOI: 10.32474/CTCSA.2024.03.000162

Abstract
Built upon these powerful LLMs, emergent LLM-based agents can present strong task fulfillment abilities in diverse

environments, ranging from virtual assistants to more sophisticated systems involving complex and creative problem solving,
planning and reasoning. This study explores the architecture of LLM-based agents and provides research directions for the future of
LLM-based agents. It concludes that each outlined direction can not only build upon the foundational elements of LLM-based agents
but also contribute to the advancement of the field at large.

Introduction and Motivation
Over the last few years, large language models (LLMs) have

evolved from mere research artifacts into useful products Open AI
[1]. This advent of large language models (LLMs) has brought new
possibilities to the agent development. Current LLMs have shown
great power in understanding instructions reasoning and solving
problems and interacting with human users as well as external en-
vironments. Built upon these powerful LLMs, emergent LLM-based
agents can present strong task fulfillment abilities in diverse en-
vironments, ranging from virtual assistants to more sophisticated
systems involving complex and creative problem solving, planning
and reasoning.

This study explores the architecture of LLM-based agents and
provides research directions for the future of LLM-based agents.

Related Work
Autonomous agents utilizing Large Language Models (LLMs)

offer promising opportunities to enhance and replicate human
workflows. In real-world applications, however, existing systems
[2] tend to oversimplify the complexities. They struggle to achieve
effective, coherent, and accurate problem-solving processes, partic

ularly when there is a need for meaningful collaborative interaction
[3].

Large language models (LLMs)are becoming a crucial building
block in developing powerful agents that utilize LLMs for reason-
ing, tool usage, and adapting to new observations [4] in many re-
al-world tasks. Given the expanding tasks that could benefit from
LLMs and the growing task complexity, an intuitive approach to
scale up the power of agents is to use multiple agents that cooper-
ate. Prior work suggests that multiple agents can help encourage
divergent thinking [5] improve factuality and reasoning and pro-
vide validation [6].

Large language model (LLM) based autonomous agents take
natural language instructions as input for complex task solving.
Agents consume observations and produce actions. The Generative
Agent-Based Models (GABM)s consumes agent actions and creates
event statements, which define what has happened in the simula-
tion as a result of the agent’s attempted action.

Some scholars [7] posit that human-beings generally act as
though they choose their actions by answering three key questions:

https://lupinepublishers.com/index.php
https://lupinepublishers.com/computer-science-journal/
http://dx.doi.org/10.32474/CTCSA.2024.03.000162

Citation: Ayse Arslan*. Exploring LLM-based Agents: An Architectural Overview. Curr Tr Comp Sci & App 3(3)- 2024. CTCSA.MS.ID.000162.
DOI: 10.32474/CTCSA.2024.03.000162

 Volume 3 - Issue 3 Copyrights @ Ayse ArslanCurr Tr Comp Sci & App

406

1.	 What kind of situation is this?

2.	 What kind of person am I?

3.	 What does a person such as I do in a situation such as this?

In a similar vein, the GABM mediates between the state of the
world and agents’ actions. The state of th One compelling example
of how an LLM-based agent solves real-world tasks can be seen in
Figure 1. Given the trip organization request from the user e world
is contained in GM’s memory and the values of grounded variables
(e.g. money, possessions, votes, etc.). To achieve this the GM has to
repeatedly answer the following questions:

1.	 What is the state of the world?

2.	 Given the state of the world, what event is the outcome of the
players activity? What observation do players make of the
event?

3.	 What effect does the event have on grounded variables?

Similar to human-beings, the GABM is responsible for:

1.	 Maintaining a consistent and grounded state of the world
where agents interact with each other.

2.	 Communicating the observable state of the world to the agents.

3.	 Deciding the effect of agents’ actions on the world and each
other.

4.	 Resolving what happens when actions submitted by multiple
agents’ conflict with one another.

The components of the GABM describe the state of the world—
for example location and status of players, state of grounded vari-
ables (money, important items) and so on–—so that GABM can de-
cide the event that happens as the outcome of players’ actions. The
outcome is described in the event statement which is then added to
the GABM associative memory. After the event has been decided the
GABM elaborates on its consequences. For example, the event could
have changed the value of one of the grounded variables or it could
have had an effect on a non-acting player.

Throughout the literature, some concrete recommendations
have been made for best practices in generative agent-based mod-
eling:

1.	 Measure generalization: Direct measurement of model pre-
dictions on truly new test data that could not have influenced
either the model’s concrete parameters or its abstract specifi-
cation is the gold standard. For instance, when a model makes
predictions about how human-beings will behave in certain
situation then there is no better form of evidence than actually
measuring how real people behave when facing the modeled
situation.

2.	 Evaluate algorithmic fidelity: Algorithmic fidelity de-
scribes the extent to which a model may be conditioned us-

ing socio-demographic backstories to simulate specific human
groups. Some scholars [14] [8] conclude from this that algo-
rithmic fidelity must be measured for each research question.
A finding of sufficient algorithmic fidelity to address one re-
search question does not imply the same will be true for others
[11, 12] [9,10].

3.	 Model comparison: It is a lot easier to support the claim that
one model is better (i.e. more trustworthy) than another mod-
el than to support the claim that either model is trustworthy
on an absolute scale without reference to the other.

4.	 Robustness: It will be important to try to develop standard-
ized sensitivity analysis / robustness-checking protocols. For
instance, it’s known that LLMs are often quite sensitive to
the precise wording used in text prompts. Best practices for
GABMs should involve sampling from a distribution of “de-
tails” and ways of asking questions to show that the factors
not thought to be mechanistically related to the outcome are
indeed as irrelevant as expected.

The most important responsibility of the GABM is to provide
the grounding for particular experimental variables. The GABM de-
termines the effect of the agents’ actions on these variables, records
them, and checks that they are valid. Whenever an agent tries to
perform an action that violates the grounding, it communicates to
them that their action was invalid.

A generative model of social interactions (i.e. a GABM) consists
of two parts:

•	 the model of the environment and

•	 the model of individual behavior.

There are: (a) a set of generative agents and (b) a generative
model for the setting and context of the social interaction i.e. the
environment, space, or world where the interaction takes place.

As chat-optimized LLMs (e.g., GPT-4) show the ability to incor-
porate feedback, LLM agents can cooperate through conversations
with each other or human(s), e.g., a dialog where agents provide
and seek reasoning, observations, critiques, and validation. As
a single LLM can exhibit a broad range of capabilities (especially
when configured with the correct prompt and inference settings),
conversations between differently configured agents can help com-
bine these broad LLM capabilities in a modular and complementa-
ry manner. Furthermore, LLMs have demonstrated ability to solve
complex tasks when the tasks are broken into simpler subtasks.
Multi-agent conversations can enable this partitioning and integra-
tion in an intuitive manner.

It is important to bear in mind that each medium has its own
unique qualities, and those qualities have a transformative impact
on society, culture, and individuals [15] [11]. For instance, the rec-
ommender algorithms used in social media have a substantial effect
on human culture and society and the fact that LLM-based systems

http://dx.doi.org/10.32474/CTCSA.2023.03.000162
http://dx.doi.org/10.32474/CTCSA.2024.03.000162

Citation: Ayse Arslan*. Exploring LLM-based Agents: An Architectural Overview. Curr Tr Comp Sci & App 3(3)- 2024. CTCSA.MS.ID.000162.
DOI: 10.32474/CTCSA.2024.03.000162

 Volume 3 - Issue 3 Copyrights @ Ayse ArslanCurr Tr Comp Sci & App

407

have analogous properties, affecting both how information is trans-
mitted and how it is valued, implies they are likely to influence hu-
man culture and society more and more as time goes on [13] [12].

To overcome LLM vulnerabilities, model validation can be done.
The basic principle of model validation is one of similarity between
tested and untested samples. A model typically makes a family of
related predictions, and perhaps a rigorous experiment tests only
one of them.

GABMs constructed for different purposes call for validation
by different forms of evidence. A GABM is said to generalize when
inferences made on the basis of the model transfer to real life. Evi-
dence of effectiveness in real life (ecological validity) is at the top,
rigorous experiments in controlled settings like labs or clinics be-
low that, observational data lower down, and consistency with pri-
or theory lower still. For validation, it also matters what the mod-
el will be used for. If it will only be used to guide decisions about
where one may most fruitfully focus time, effort, and resources in
further research (e.g., in piloting) then the evidence bar should be
correspondingly lower than if the model is to be used to guide real
world decisions with real consequences.

A major topic of interest is how large-scale “macrosocial” pat-
terns emerge from the “microsocial” decisions of individuals [8]
[13], as explored, for example, in assemblage theory (DeLanda,
2016, 2011). For instance, the collective social phenomena of in-
formation diffusion emerged in a simulation without specific pro-
gramming to enable it [11] [9]. The generative agent’s ability to
copy, communicate, reproduce, and modify behavioral and thinking
patterns potentially makes them a substrate for cultural evolution.

Some change in their environment eventually forces their
routines to end, and when that happens, they have to engage in
sense-making by asking themselves “what is the story here?” and
“what should I do now?” by retrospectively connecting their past
experiences and engaging in dialogue with other members of the

organization. New social facts and routines can emerge from this
sense-making process.

It should also be taken into account changes in the social struc-
tures constituting the environment deeply change the agents’ own
“internal” models and categories [19] [14]. Causal influence flows
both from agents to social structures as well as from social struc-
tures to agents. Agents and structures may be said to co-constitute
one another (Onuf, 1989) [15].

Overview of Architecture
The layered architecture ensures a clear delineation of respon-

sibilities across the system. LLM-based single-agent systems (SAS)
use a single LLM agent for complex task solving, such as travel plan-
ning or personalized recommendation [16]. The agent takes natu-
ral language instruction from users as input and decomposes the
task into a multistep plan for task solving, where each step may call
external tools to be completed, such as collecting information, exe-
cuting specialized models, or interacting with the external world.

LLM-based multi-agent systems (MAS) leverage the interaction
among multiple agents for problem solving [17]. The relationship
among the multiple agents could be cooperative, competitive, or
a mixture of cooperation and. In cooperative multi-agent systems,
each agent takes and assesses the information provided by other
agents, thereby working together to solve complex tasks [18].

In competitive multi-agent systems, agents may debate, nego-
tiate and compete with each other. Some multi-agent systems may
exhibit both cooperation and competition among agents.

One compelling example of how an LLM-based agent solves re-
al-world tasks can be seen in Figure 1. Given the trip organization
request from the user, the travel agent follows the steps sequen-
tially to book flights, reserve hotels, process payments, and update
calendars based on the user’s preferences [19].

Figure 1: An Overview of LLM-based agent.

During the plan execution, agents show the reasoning and
decision-making abilities, which sets it apart from the traditional
software applications that are constrained to a pre-defined set of
functions or workflow [20]. To realize this travel scenario, the agent

needs to interact with both LLM services (e.g, retrieving and under-
standing user preferences, deciding which tool API to call, generat-
ing reviews and responses) and traditional operating system (OS)
services (e.g., accessing disk driver and executing software).

http://dx.doi.org/10.32474/CTCSA.2023.03.000162

Citation: Ayse Arslan*. Exploring LLM-based Agents: An Architectural Overview. Curr Tr Comp Sci & App 3(3)- 2024. CTCSA.MS.ID.000162.
DOI: 10.32474/CTCSA.2024.03.000162

 Volume 3 - Issue 3 Copyrights @ Ayse ArslanCurr Tr Comp Sci & App

408

Accompanied by the exponential growth in the agent quantity
and complexity, there is an increasing strain on the functionalities
of LLM. For example, scheduling and prioritizing agent requests in
limited LLM resources poses a significant challenge.

Moreover, the LLM’s generation process can become time-in-
tensive when dealing with lengthy contexts, occasionally resulting
in the generation being suspended by the scheduler. This raises the
problem of devising a mechanism to snapshot the LLM’s current
generation result, thereby enabling pause/resume behavior even
when the LLM has not finalized the response generation for the
current request.

Within this context, each higher layer abstracts the complexi-
ties of the layers below it, facilitating interaction through interfaces
or specific modules, thereby enhancing modularity and simplifying
system interactions across different layers.

1.	 Application Layer:

At the application layer, agent applications, such as travel agent
or math agent, are developed and deployed. This SDK allows for de-
velopment of agent applications by offering a rich toolkit that ab-
stract away the complexities of lower-level system functions. This
enables developers to dedicate their focus to the essential logic and
functionalities of their agents, facilitating a more efficient develop-
ment process.

2.	 Kernel Layer:

The kernel layer is divided into two primary components: the
OS Kernel and the LLM Kernel, each serving the unique require-
ments of non-LLM and LLM-specific operations, respectively. This
distinction allows the LLM kernel to focus on LLM specific tasks
such as context management and agent scheduling, which are es-
sential for handling LLM-related activities and are not typically
within the purview of standard OS kernel functions.

3.	 Hardware Layer:

The hardware layer comprises the physical components of the
system, including the CPU, GPU, memory, disk, and peripheral de-
vices. It is crucial to note that the LLM kernel’s system calls cannot
directly interact with the hardware.

Agent scheduler is designed to manage the agent requests in
an efficient way. In the sequential execution paradigm, the agent
tasks are processed in a linear order, where steps from a same agent
will be processed first. This can lead to potential increased waiting
times for tasks queued later in the sequence.

4.	 Context Manager:

The context manager is responsible for managing the context
provided to LLM and the generation process given certain context.
It primarily involves two crucial functions: context snapshot and
restoration, and context window management Figure 2.

Figure 2: An example for a context snapshot and restoration during generative decoding process.

http://dx.doi.org/10.32474/CTCSA.2023.03.000162
http://dx.doi.org/10.32474/CTCSA.2024.03.000162

Citation: Ayse Arslan*. Exploring LLM-based Agents: An Architectural Overview. Curr Tr Comp Sci & App 3(3)- 2024. CTCSA.MS.ID.000162.
DOI: 10.32474/CTCSA.2024.03.000162

 Volume 3 - Issue 3 Copyrights @ Ayse ArslanCurr Tr Comp Sci & App

409

5.	 Context Snapshot and Restoration:

When such generation process has been suspended by the
scheduler at an intermediate step, the context manager uses the
snapshot function to capture and store the current state of the
LLM’s beam search tree, including all intermediate probabilities
and paths being explored for generating the response.

The restoration function is employed to reload the saved state
from the snapshot, allowing the LLM to continue its generation pro-
cess exactly from the point of suspension to reach the final answer.
In this way, the context manager ensures that the temporary sus-
pension of one agent’s request does not lead to a loss of progress,
thereby optimizing resource use without compromising the quality
and efficiency of response generation.

6.	 Context Window Management:

To address challenges posed by long contexts that surpass the
context window limit of LLMs, context manager also needs to man-
age potential expansion of context window. In this way, it can help
enhance the LLM’s ability to process and understand extensive con-
texts without compromising the integrity or relevance of the infor-
mation.

7.	 Memory Manager

Memory manager manages short-term memory within an
agent’s lifecycle, ensuring that data is stored and accessible only
while the agent is active, either waiting for execution or during
runtime. Compared with the storage manager introduced in the fol-
lowing, the memory manager enables rapid data retrieval and pro-
cessing, facilitating swift responses to user queries and interactions
without overburdening the storage of AIOS.

8.	 Storage Manager

In contrast, the storage manager is responsible for the long-
term preservation of data, overseeing the storage of information
that needs to be retained indefinitely, beyond the active lifespan of
any single agent. This is achieved through mediums such as local
files, databases, or cloud-based solutions, ensuring data integrity
and availability for future reference or analysis.

9.	 Tool Manager

The tool manager integrates commonly-used tools from various
sources and classify them into different categories, which covers
web search, scientific computing, database retrieval, image pro-
cessing, etc. In this way, the managed tools can cover different mo-
dalities of input and output (image and text), thus facilitating agent
development within the ecosystem.

10.	 Access Manager

The access manager orchestrates access control operations
among distinct agents by administering a dedicated privilege
group for each agent. Those other agents that are excluded from an
agent’s privilege group are denied access to its resources, such as

the interaction history.

To further enhance system transparency, the access manager
compiles and maintains auditing logs. These logs capture detailed
information about access requests, agent activities, and any modi-
fications to the access control parameters, which help to safeguard
against potential privilege attacks.

11.	 LLM System Call

LLM system call interface within the LLM kernel is designed
to offer basic LLM call operation functions. This interface acts as a
bridge between complex agent requests and the execution of differ-
ent kernel’s modules. This LLM system calls offers a suite of basic
functions that span across the kernel’s modules, including agent
management, context handling, memory and storage operations,
and access control.

12.	 Implementation Framework

Below is an example of how the agent class implements three
methods:

1.	 .name()—returns the name of the agent, that is being re-
ferred to in the simulation. It is important that all agents have
unique names;

2.	 .observe(observation: str)—a function to take in an ob-
servation;

3.	 .act(action spec)—returns the action (as a string), for
example “Alice makes breakfast”. The function takes in action
spec, which specifies the type of output (free form, categorical,
float) and the specific phrasing of the call to action. For exam-
ple, the call to action could be “what would Alice do in the next
hour?”, in this case the answer type would be free form. Or it
could be “Would Alice eat steak for dinner?” with answer type
of binary choice (yes / no).

The agent class constructor is parameterized by a list of com-
ponents. The components of agent have to implement the following
functions:

1.	 .state()—returns the state of the component, for example
“Alice is vegetarian”;

2.	 .name()—returns the name of the components, for exam-
ple “dietary preferences”;

3.	 .update()—updates the state of the component by imple-
menting; eq. (2). Optional, can pass for constant constructs;

4.	 .observe(observation: str)—takes in an observation, for
later use during update. Optional. Observations always go into the
memory anyway, but some components are easier to implement by
directly subscribing to the observation stream.

During an episode, on each timestep, each agent calls .state() on
all its components to construct the context of its next decision and
implements eq. (1) (the components’ states are concatenated in the

http://dx.doi.org/10.32474/CTCSA.2023.03.000162

Citation: Ayse Arslan*. Exploring LLM-based Agents: An Architectural Overview. Curr Tr Comp Sci & App 3(3)- 2024. CTCSA.MS.ID.000162.
DOI: 10.32474/CTCSA.2024.03.000162

 Volume 3 - Issue 3 Copyrights @ Ayse ArslanCurr Tr Comp Sci & App

410

order supplied to the agents’ constructor). .observe() is called on
each component whenever it receives observations, and .update()
is called at regular intervals (configurable in the constructor). Un-
like in RL, we do not assume that the agent will produce an action
after every observation. Here the GM might call .observe() several
times before it calls .act().

LLM Agent Service Evaluation
In modern systems, data is the new king. A large amount of

high-quality data is needed in order to build and evaluate services
and models. Yet, collecting and curating user data is often challeng-
ing, especially when dealing with personal user data where privacy
is of high concern. This creates a chicken-egg scenario, where data
is needed for building of modern systems yet users might be reluc-
tant to provide said that without immediate benefit.

Moreover, when considering the case of evaluating personal-
ized services where each instance is specific and tailored to the in-
dividual user, it makes the problem even more substantial. How can
one A/B test a personalized service at the single user level?

The grounded action space offers a conceptual way to over-
come some of these challenges by simulating synthetic users and
allowing them to interact with real services. This can allow genera-
tion of synthetic user activity by constructing, via simulation, agent
digital action logs along with agent reasoning for each action. This
data can serve as training data, or evaluation. By repeated simula-
tion with different services configurations, one can perform at the
single user level A/B testing of a service.

Nevertheless, it is important to note that this concept is contin-
gent on the ability of the underlying LLM and system to faithfully
capture user experience and realistic behavior. Therefore, the vi-
ability of this approach is highly dependent on the representation
and reasoning power of the LLM, and the use of best practices.

Future Work
Since there is no consensus at present concerning how to inter-

pret results of LLM-based simulations of human populations, the
future work will address the critical epistemic question: “by what
standard should we judge whether (and in what ways, and under
which conditions) the results of in silico experiments are likely to
generalize to the real world?”.

These are not questions any one group of researchers can an-
swer by themselves; rather these issues must be negotiated by the
community as a whole. It should be seen as an invitation to the re-
searchers from various fields that are interested in GABM to come
onboard and participate in the creation of validating procedures,
best practices, and epistemic norms.

Other topics of interest worth to explore might be:

New environments

1.	 Integration with different LLMs to see which are more suitable

for constructing GABMs (e.g., they act “reasonably”, are inter-
nally consistent, apply common sense, etc).

2.	 Improving agents—better associative memory, context-driven
and dynamic component assemblage, tool use.

Visualization and audit tools.

3.	 Snapshot—serializing and persisting the simulation at specific
episode, to enable to later resumption and performance com-
parison of different approaches for a specific scenario.

4.	 Keyframes—conditioning the agent actions to be consistent
with future key action or of narrative. This allow steering the
simulation more granularly and addresses an inherent issue
that is caused by the fact that there is no guarantee that due
to the stochastic nature of GABMs, ongoing simulations might
diverge from their intended topic.

5.	 There are many directions for future research to pursue. This
section outlines potential areas of study that expand upon the
foundational features of LLM-based agents.

Advanced Scheduling Algorithms

6.	 Future research could focus on algorithms that perform de-
pendency analysis among agent requests, optimizing the al-
location of computational resources. Additionally, some of the
tool resources are locally deployed models, which can also be
incorporated into the scheduling paradigm.

Efficiency of Context Management

7.	 More efficient mechanisms can be devised to assist context
management. For example, the pursuit of time-efficient con-
text management techniques could significantly augment user
experience by expediting the processes of context snapshot-
ting and restoration. Also, context compression techniques can
also be leveraged prior to snapshotting, which can yield a more
space-efficient solution.

Optimization of Memory and Storage Architecture

8.	 In the context of agent collaboration and communication, the
future design of memory and storage systems can adopt a
shared approach, enabling the sharing of memory and storage
between agents. Such an architecture would enable agents to
access a communal pool of memory and storage, thereby im-
proving the agents’ decision-making ability since one agent
can benefit from other agents’ memory or storage.

Safety and Privacy Enhancements

9.	 In the realm of privacy, the exploration of advanced encryption
techniques is vital for safeguarding data transmission within
AIOS, thus maintaining the confidentiality of agent communi-
cations. Furthermore, the implementation of watermarking
techniques could serve to protect the intellectual property of
agent developers by embedding unique identifiers in outputs,

http://dx.doi.org/10.32474/CTCSA.2023.03.000162
http://dx.doi.org/10.32474/CTCSA.2024.03.000162

Citation: Ayse Arslan*. Exploring LLM-based Agents: An Architectural Overview. Curr Tr Comp Sci & App 3(3)- 2024. CTCSA.MS.ID.000162.
DOI: 10.32474/CTCSA.2024.03.000162

 Volume 3 - Issue 3 Copyrights @ Ayse ArslanCurr Tr Comp Sci & App

411

facilitating the tracing of data lineage.

In a nutshell, LLM-based agents stand as a motivating body of
work that brings a broad spectrum of research opportunities. Each
outlined direction can not only build upon the foundational ele-
ments of LLM-based agents but also contribute to the advancement
of the field at large.

Conclusions
This paper proposes an architecture, demonstrating the po-

tential to facilitate the development and deployment of LLM-based
agents, fostering a more cohesive, effective and efficient agent eco-
system. The insights and methodologies presented herein contrib-
ute to the ongoing discourse in both AI and system research, of-
fering a viable solution to the integration challenges posed by the
diverse landscape of AI Agents.

Diverse future work can be built upon this foundation, exploring
innovative ways to refine and expand the AIOS architecture to meet
the evolving needs of developing and deploying LLM agents.

References
1.	 Johnson P (2019) Innovations in Machine Learning, TechWorld Blogs.

2.	 Lee K and Robinson J (2021) AI Ethics and the Future.

3.	 Davis M and Clark S (2020) Artificial Intelligence in Modern Healthcare,
AI & Medicine 22(4): 567-580.

4.	 Patel R and Kim J (2020) Evaluating Neural Network Performance,
Proceedings of the 13th International Conference on Data Science.

5.	 Brown A and White T (2021) Deep Learning Techniques for Image
Recognition, WebSci 21: Proceedings of the 2021 ACM on Web Science
Conference pp. 405-411.

6.	 Wilson E, et al. (2022) Understanding Convolutional Neural Networks,
Proceedings of the 2022 IEEE International Conference on Computer
Vision pp. 1235-1241.

7.	 Thomas G and Taylor S (2020) AI and Bias: Current Challenges, Journal
of Artificial Intelligence Ethics 21: 567-581.

8.	 Morris R and Walker P (2021) Deep Learning for Text Analysis,
Proceedings of the 15th International Conference on Computational
Linguistics.

9.	 Green T (2020) The Evolution of Search Algorithms, Google Tech Blogs.

10.	Smith A and Jones M (2021) Artificial Intelligence and Robotics.

11.	King S and Lee D (2019) AI for Environmental Monitoring, WebSci ’19:
Proceedings of the 2019 ACM on Web Science Conference pp. 345-352.

12.	Cooper H and Taylor K (2020) AI in Financial Services, Financial AI 30
(2):198-211.

13.	Roberts L, et al. (2018) Emotion Recognition Using Recurrent Neural
Networks, ACL ’18: Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics pp. 346-351.

14.	Harris P and Wilson R (2018) Data Ethics in AI Research, Frontiers in
AI Research.

15.	Anderson H and Brown M (2017) Data Security in AI Systems, Frontiers
in AI and Applications, 15 March 2017.

16.	Chen J and Zhao L (2020) Building Resilient AI Systems for Industry
Applications, Journal of Machine Learning Applications 25(1):125-136.

17.	Adams G, et al. (2021) Neural Networks in Speech Recognition,”
Proceedings of the 2021 IEEE International Conference on Speech
Processing pp. 223-230.

18.	Reed K and Thomas J (2020) Mitigating Bias in AI Algorithms, Journal of
Ethical AI 22: 112-124.

19.	Brown L, et al. (2020) Predictive Analytics Using Deep Learning, ACL
’20: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics pp. 547-552.

20.	Young S and Zhang Y (2020) AI for Smart Cities, Journal of Urban AI
33(3): 189-202.

 Current Trends in Computer Sciences
& Applications

Assets of Publishing with us

•	 Global archiving of articles

•	 Immediate, unrestricted online access

•	 Rigorous Peer Review Process

•	 Authors Retain Copyrights

•	 Unique DOI for all articles

This work is licensed under Creative
Commons Attribution 4.0 License

To Submit Your Article Click Here: Submit Article

DOI: 10.32474/CTCSA.2024.03.000162

http://dx.doi.org/10.32474/CTCSA.2023.03.000162
http://dx.doi.org/10.32474/CTCSA.2024.03.000162

	Abstract

