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Abstract
Built upon these powerful LLMs, emergent LLM-based agents can present strong task fulfillment abilities in diverse 

environments, ranging from virtual assistants to more sophisticated systems involving complex and creative problem solving, 
planning and reasoning. This study explores the architecture of LLM-based agents and provides research directions for the future of 
LLM-based agents. It concludes that each outlined direction can not only build upon the foundational elements of LLM-based agents 
but also contribute to the advancement of the field at large.

Introduction and Motivation
Over the last few years, large language models (LLMs) have 

evolved from mere research artifacts into useful products Open AI 
[1]. This advent of large language models (LLMs) has brought new 
possibilities to the agent development. Current LLMs have shown 
great power in understanding instructions reasoning and solving 
problems and interacting with human users as well as external en-
vironments. Built upon these powerful LLMs, emergent LLM-based 
agents can present strong task fulfillment abilities in diverse en-
vironments, ranging from virtual assistants to more sophisticated 
systems involving complex and creative problem solving, planning 
and reasoning.

This study explores the architecture of LLM-based agents and 
provides research directions for the future of LLM-based agents.

Related Work
Autonomous agents utilizing Large Language Models (LLMs) 

offer promising opportunities to enhance and replicate human 
workflows. In real-world applications, however, existing systems 
[2] tend to oversimplify the complexities. They struggle to achieve 
effective, coherent, and accurate problem-solving processes, partic 

 

ularly when there is a need for meaningful collaborative interaction 
[3].

Large language models (LLMs)are becoming a crucial building 
block in developing powerful agents that utilize LLMs for reason-
ing, tool usage, and adapting to new observations [4] in many re-
al-world tasks. Given the expanding tasks that could benefit from 
LLMs and the growing task complexity, an intuitive approach to 
scale up the power of agents is to use multiple agents that cooper-
ate. Prior work suggests that multiple agents can help encourage 
divergent thinking [5] improve factuality and reasoning and pro-
vide validation [6].

Large language model (LLM) based autonomous agents take 
natural language instructions as input for complex task solving. 
Agents consume observations and produce actions. The Generative 
Agent-Based Models (GABM)s consumes agent actions and creates 
event statements, which define what has happened in the simula-
tion as a result of the agent’s attempted action. 

Some scholars [7] posit that human-beings generally act as 
though they choose their actions by answering three key questions:

https://lupinepublishers.com/index.php
https://lupinepublishers.com/computer-science-journal/
http://dx.doi.org/10.32474/CTCSA.2024.03.000162


Citation: Ayse Arslan*. Exploring LLM-based Agents: An Architectural Overview. Curr Tr Comp Sci & App 3(3)- 2024. CTCSA.MS.ID.000162. 
DOI: 10.32474/CTCSA.2024.03.000162

                                                                                                                                                          Volume 3 - Issue 3 Copyrights @ Ayse ArslanCurr Tr Comp Sci & App

406

1.	 What kind of situation is this?

2.	 What kind of person am I?

3.	 What does a person such as I do in a situation such as this?

In a similar vein, the GABM mediates between the state of the 
world and agents’ actions. The state of th One compelling example 
of how an LLM-based agent solves real-world tasks can be seen in 
Figure 1. Given the trip organization request from the user e world 
is contained in GM’s memory and the values of grounded variables 
(e.g. money, possessions, votes, etc.). To achieve this the GM has to 
repeatedly answer the following questions:

1.	 What is the state of the world?

2.	 Given the state of the world, what event is the outcome of the 
players activity? What observation do players make of the 
event?

3.	 What effect does the event have on grounded variables?

Similar to human-beings, the GABM is responsible for:

1.	 Maintaining a consistent and grounded state of the world 
where agents interact with each other.

2.	 Communicating the observable state of the world to the agents.

3.	 Deciding the effect of agents’ actions on the world and each 
other.

4.	 Resolving what happens when actions submitted by multiple 
agents’ conflict with one another.

The components of the GABM describe the state of the world—
for example location and status of players, state of grounded vari-
ables (money, important items) and so on–—so that GABM can de-
cide the event that happens as the outcome of players’ actions. The 
outcome is described in the event statement which is then added to 
the GABM associative memory. After the event has been decided the 
GABM elaborates on its consequences. For example, the event could 
have changed the value of one of the grounded variables or it could 
have had an effect on a non-acting player.

Throughout the literature, some concrete recommendations 
have been made for best practices in generative agent-based mod-
eling:

1.	 Measure generalization: Direct measurement of model pre-
dictions on truly new test data that could not have influenced 
either the model’s concrete parameters or its abstract specifi-
cation is the gold standard. For instance, when a model makes 
predictions about how human-beings will behave in certain 
situation then there is no better form of evidence than actually 
measuring how real people behave when facing the modeled 
situation. 

2.	 Evaluate algorithmic fidelity: Algorithmic fidelity de-
scribes the extent to which a model may be conditioned us-

ing socio-demographic backstories to simulate specific human 
groups. Some scholars [14] [8] conclude from this that algo-
rithmic fidelity must be measured for each research question. 
A finding of sufficient algorithmic fidelity to address one re-
search question does not imply the same will be true for others 
[11, 12] [9,10].

3.	 Model comparison: It is a lot easier to support the claim that 
one model is better (i.e. more trustworthy) than another mod-
el than to support the claim that either model is trustworthy 
on an absolute scale without reference to the other.

4.	 Robustness: It will be important to try to develop standard-
ized sensitivity analysis / robustness-checking protocols. For 
instance, it’s known that LLMs are often quite sensitive to 
the precise wording used in text prompts. Best practices for 
GABMs should involve sampling from a distribution of “de-
tails” and ways of asking questions to show that the factors 
not thought to be mechanistically related to the outcome are 
indeed as irrelevant as expected. 

The most important responsibility of the GABM is to provide 
the grounding for particular experimental variables. The GABM de-
termines the effect of the agents’ actions on these variables, records 
them, and checks that they are valid. Whenever an agent tries to 
perform an action that violates the grounding, it communicates to 
them that their action was invalid. 

A generative model of social interactions (i.e. a GABM) consists 
of two parts: 

•	 the model of the environment and 

•	 the model of individual behavior. 

There are: (a) a set of generative agents and (b) a generative 
model for the setting and context of the social interaction i.e. the 
environment, space, or world where the interaction takes place. 

As chat-optimized LLMs (e.g., GPT-4) show the ability to incor-
porate feedback, LLM agents can cooperate through conversations 
with each other or human(s), e.g., a dialog where agents provide 
and seek reasoning, observations, critiques, and validation. As 
a single LLM can exhibit a broad range of capabilities (especially 
when configured with the correct prompt and inference settings), 
conversations between differently configured agents can help com-
bine these broad LLM capabilities in a modular and complementa-
ry manner. Furthermore, LLMs have demonstrated ability to solve 
complex tasks when the tasks are broken into simpler subtasks. 
Multi-agent conversations can enable this partitioning and integra-
tion in an intuitive manner. 

It is important to bear in mind that each medium has its own 
unique qualities, and those qualities have a transformative impact 
on society, culture, and individuals [15] [11]. For instance, the rec-
ommender algorithms used in social media have a substantial effect 
on human culture and society and the fact that LLM-based systems 
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have analogous properties, affecting both how information is trans-
mitted and how it is valued, implies they are likely to influence hu-
man culture and society more and more as time goes on [13] [12]. 

To overcome LLM vulnerabilities, model validation can be done. 
The basic principle of model validation is one of similarity between 
tested and untested samples. A model typically makes a family of 
related predictions, and perhaps a rigorous experiment tests only 
one of them. 

GABMs constructed for different purposes call for validation 
by different forms of evidence. A GABM is said to generalize when 
inferences made on the basis of the model transfer to real life. Evi-
dence of effectiveness in real life (ecological validity) is at the top, 
rigorous experiments in controlled settings like labs or clinics be-
low that, observational data lower down, and consistency with pri-
or theory lower still. For validation, it also matters what the mod-
el will be used for. If it will only be used to guide decisions about 
where one may most fruitfully focus time, effort, and resources in 
further research (e.g., in piloting) then the evidence bar should be 
correspondingly lower than if the model is to be used to guide real 
world decisions with real consequences. 

A major topic of interest is how large-scale “macrosocial” pat-
terns emerge from the “microsocial” decisions of individuals [8] 
[13], as explored, for example, in assemblage theory (DeLanda, 
2016, 2011). For instance, the collective social phenomena of in-
formation diffusion emerged in a simulation without specific pro-
gramming to enable it [11] [9]. The generative agent’s ability to 
copy, communicate, reproduce, and modify behavioral and thinking 
patterns potentially makes them a substrate for cultural evolution.

Some change in their environment eventually forces their 
routines to end, and when that happens, they have to engage in 
sense-making by asking themselves “what is the story here?” and 
“what should I do now?” by retrospectively connecting their past 
experiences and engaging in dialogue with other members of the 

organization. New social facts and routines can emerge from this 
sense-making process.

It should also be taken into account changes in the social struc-
tures constituting the environment deeply change the agents’ own 
“internal” models and categories [19] [14]. Causal influence flows 
both from agents to social structures as well as from social struc-
tures to agents. Agents and structures may be said to co-constitute 
one another (Onuf, 1989) [15].

Overview of Architecture
The layered architecture ensures a clear delineation of respon-

sibilities across the system. LLM-based single-agent systems (SAS) 
use a single LLM agent for complex task solving, such as travel plan-
ning or personalized recommendation [16]. The agent takes natu-
ral language instruction from users as input and decomposes the 
task into a multistep plan for task solving, where each step may call 
external tools to be completed, such as collecting information, exe-
cuting specialized models, or interacting with the external world. 

LLM-based multi-agent systems (MAS) leverage the interaction 
among multiple agents for problem solving [17]. The relationship 
among the multiple agents could be cooperative, competitive, or 
a mixture of cooperation and. In cooperative multi-agent systems, 
each agent takes and assesses the information provided by other 
agents, thereby working together to solve complex tasks [18]. 

In competitive multi-agent systems, agents may debate, nego-
tiate and compete with each other. Some multi-agent systems may 
exhibit both cooperation and competition among agents. 

One compelling example of how an LLM-based agent solves re-
al-world tasks can be seen in Figure 1. Given the trip organization 
request from the user, the travel agent follows the steps sequen-
tially to book flights, reserve hotels, process payments, and update 
calendars based on the user’s preferences [19]. 

Figure 1: An Overview of LLM-based agent.

During the plan execution, agents show the reasoning and 
decision-making abilities, which sets it apart from the traditional 
software applications that are constrained to a pre-defined set of 
functions or workflow [20]. To realize this travel scenario, the agent 

needs to interact with both LLM services (e.g, retrieving and under-
standing user preferences, deciding which tool API to call, generat-
ing reviews and responses) and traditional operating system (OS) 
services (e.g., accessing disk driver and executing software).
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Accompanied by the exponential growth in the agent quantity 
and complexity, there is an increasing strain on the functionalities 
of LLM. For example, scheduling and prioritizing agent requests in 
limited LLM resources poses a significant challenge. 

Moreover, the LLM’s generation process can become time-in-
tensive when dealing with lengthy contexts, occasionally resulting 
in the generation being suspended by the scheduler. This raises the 
problem of devising a mechanism to snapshot the LLM’s current 
generation result, thereby enabling pause/resume behavior even 
when the LLM has not finalized the response generation for the 
current request. 

Within this context, each higher layer abstracts the complexi-
ties of the layers below it, facilitating interaction through interfaces 
or specific modules, thereby enhancing modularity and simplifying 
system interactions across different layers.

1.	 Application Layer:

At the application layer, agent applications, such as travel agent 
or math agent, are developed and deployed. This SDK allows for de-
velopment of agent applications by offering a rich toolkit that ab-
stract away the complexities of lower-level system functions. This 
enables developers to dedicate their focus to the essential logic and 
functionalities of their agents, facilitating a more efficient develop-
ment process.

2.	 Kernel Layer:

The kernel layer is divided into two primary components: the 
OS Kernel and the LLM Kernel, each serving the unique require-
ments of non-LLM and LLM-specific operations, respectively. This 
distinction allows the LLM kernel to focus on LLM specific tasks 
such as context management and agent scheduling, which are es-
sential for handling LLM-related activities and are not typically 
within the purview of standard OS kernel functions. 

3.	 Hardware Layer:

The hardware layer comprises the physical components of the 
system, including the CPU, GPU, memory, disk, and peripheral de-
vices. It is crucial to note that the LLM kernel’s system calls cannot 
directly interact with the hardware. 

Agent scheduler is designed to manage the agent requests in 
an efficient way. In the sequential execution paradigm, the agent 
tasks are processed in a linear order, where steps from a same agent 
will be processed first. This can lead to potential increased waiting 
times for tasks queued later in the sequence.

4.	 Context Manager:

The context manager is responsible for managing the context 
provided to LLM and the generation process given certain context. 
It primarily involves two crucial functions: context snapshot and 
restoration, and context window management Figure 2.

Figure 2: An example for a context snapshot and restoration during generative decoding process.
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5.	 Context Snapshot and Restoration:

When such generation process has been suspended by the 
scheduler at an intermediate step, the context manager uses the 
snapshot function to capture and store the current state of the 
LLM’s beam search tree, including all intermediate probabilities 
and paths being explored for generating the response. 

The restoration function is employed to reload the saved state 
from the snapshot, allowing the LLM to continue its generation pro-
cess exactly from the point of suspension to reach the final answer. 
In this way, the context manager ensures that the temporary sus-
pension of one agent’s request does not lead to a loss of progress, 
thereby optimizing resource use without compromising the quality 
and efficiency of response generation.

6.	 Context Window Management:

To address challenges posed by long contexts that surpass the 
context window limit of LLMs, context manager also needs to man-
age potential expansion of context window. In this way, it can help 
enhance the LLM’s ability to process and understand extensive con-
texts without compromising the integrity or relevance of the infor-
mation.

7.	 Memory Manager

Memory manager manages short-term memory within an 
agent’s lifecycle, ensuring that data is stored and accessible only 
while the agent is active, either waiting for execution or during 
runtime. Compared with the storage manager introduced in the fol-
lowing, the memory manager enables rapid data retrieval and pro-
cessing, facilitating swift responses to user queries and interactions 
without overburdening the storage of AIOS.

8.	 Storage Manager

In contrast, the storage manager is responsible for the long-
term preservation of data, overseeing the storage of information 
that needs to be retained indefinitely, beyond the active lifespan of 
any single agent. This is achieved through mediums such as local 
files, databases, or cloud-based solutions, ensuring data integrity 
and availability for future reference or analysis. 

9.	 Tool Manager

The tool manager integrates commonly-used tools from various 
sources and classify them into different categories, which covers 
web search, scientific computing, database retrieval, image pro-
cessing, etc. In this way, the managed tools can cover different mo-
dalities of input and output (image and text), thus facilitating agent 
development within the ecosystem.

10.	 Access Manager

The access manager orchestrates access control operations 
among distinct agents by administering a dedicated privilege 
group for each agent. Those other agents that are excluded from an 
agent’s privilege group are denied access to its resources, such as 

the interaction history. 

To further enhance system transparency, the access manager 
compiles and maintains auditing logs. These logs capture detailed 
information about access requests, agent activities, and any modi-
fications to the access control parameters, which help to safeguard 
against potential privilege attacks.

11.	 LLM System Call

LLM system call interface within the LLM kernel is designed 
to offer basic LLM call operation functions. This interface acts as a 
bridge between complex agent requests and the execution of differ-
ent kernel’s modules. This LLM system calls offers a suite of basic 
functions that span across the kernel’s modules, including agent 
management, context handling, memory and storage operations, 
and access control. 

12.	 Implementation Framework

Below is an example of how the agent class implements three 
methods:

1.	 .name()—returns the name of the agent, that is being re-
ferred to in the simulation. It is important that all agents have 
unique names;

2.	 .observe(observation: str)—a function to take in an ob-
servation;

3.	 .act(action spec)—returns the action (as a string), for 
example “Alice makes breakfast”. The function takes in action 
spec, which specifies the type of output (free form, categorical, 
float) and the specific phrasing of the call to action. For exam-
ple, the call to action could be “what would Alice do in the next 
hour?”, in this case the answer type would be free form. Or it 
could be “Would Alice eat steak for dinner?” with answer type 
of binary choice (yes / no).

The agent class constructor is parameterized by a list of com-
ponents. The components of agent have to implement the following 
functions:

1.	 .state()—returns the state of the component, for example 
“Alice is vegetarian”;

2.	 .name()—returns the name of the components, for exam-
ple “dietary preferences”;

3.	 .update()—updates the state of the component by imple-
menting; eq. (2). Optional, can pass for constant constructs;

4.	 .observe(observation: str)—takes in an observation, for 
later use during update. Optional. Observations always go into the 
memory anyway, but some components are easier to implement by 
directly subscribing to the observation stream.

During an episode, on each timestep, each agent calls .state() on 
all its components to construct the context of its next decision and 
implements eq. (1) (the components’ states are concatenated in the 
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order supplied to the agents’ constructor). .observe() is called on 
each component whenever it receives observations, and .update() 
is called at regular intervals (configurable in the constructor). Un-
like in RL, we do not assume that the agent will produce an action 
after every observation. Here the GM might call .observe() several 
times before it calls .act().

LLM Agent Service Evaluation
In modern systems, data is the new king. A large amount of 

high-quality data is needed in order to build and evaluate services 
and models. Yet, collecting and curating user data is often challeng-
ing, especially when dealing with personal user data where privacy 
is of high concern. This creates a chicken-egg scenario, where data 
is needed for building of modern systems yet users might be reluc-
tant to provide said that without immediate benefit.

Moreover, when considering the case of evaluating personal-
ized services where each instance is specific and tailored to the in-
dividual user, it makes the problem even more substantial. How can 
one A/B test a personalized service at the single user level?

The grounded action space offers a conceptual way to over-
come some of these challenges by simulating synthetic users and 
allowing them to interact with real services. This can allow genera-
tion of synthetic user activity by constructing, via simulation, agent 
digital action logs along with agent reasoning for each action. This 
data can serve as training data, or evaluation. By repeated simula-
tion with different services configurations, one can perform at the 
single user level A/B testing of a service.

Nevertheless, it is important to note that this concept is contin-
gent on the ability of the underlying LLM and system to faithfully 
capture user experience and realistic behavior. Therefore, the vi-
ability of this approach is highly dependent on the representation 
and reasoning power of the LLM, and the use of best practices.

Future Work
Since there is no consensus at present concerning how to inter-

pret results of LLM-based simulations of human populations, the 
future work will address the critical epistemic question: “by what 
standard should we judge whether (and in what ways, and under 
which conditions) the results of in silico experiments are likely to 
generalize to the real world?”. 

These are not questions any one group of researchers can an-
swer by themselves; rather these issues must be negotiated by the 
community as a whole. It should be seen as an invitation to the re-
searchers from various fields that are interested in GABM to come 
onboard and participate in the creation of validating procedures, 
best practices, and epistemic norms.

Other topics of interest worth to explore might be:

New environments

1.	 Integration with different LLMs to see which are more suitable 

for constructing GABMs (e.g., they act “reasonably”, are inter-
nally consistent, apply common sense, etc).

2.	 Improving agents—better associative memory, context-driven 
and dynamic component assemblage, tool use.

Visualization and audit tools.

3.	 Snapshot—serializing and persisting the simulation at specific 
episode, to enable to later resumption and performance com-
parison of different approaches for a specific scenario.

4.	 Keyframes—conditioning the agent actions to be consistent 
with future key action or of narrative. This allow steering the 
simulation more granularly and addresses an inherent issue 
that is caused by the fact that there is no guarantee that due 
to the stochastic nature of GABMs, ongoing simulations might 
diverge from their intended topic.

5.	 There are many directions for future research to pursue. This 
section outlines potential areas of study that expand upon the 
foundational features of LLM-based agents.

Advanced Scheduling Algorithms

6.	 Future research could focus on algorithms that perform de-
pendency analysis among agent requests, optimizing the al-
location of computational resources. Additionally, some of the 
tool resources are locally deployed models, which can also be 
incorporated into the scheduling paradigm. 

Efficiency of Context Management

7.	 More efficient mechanisms can be devised to assist context 
management. For example, the pursuit of time-efficient con-
text management techniques could significantly augment user 
experience by expediting the processes of context snapshot-
ting and restoration. Also, context compression techniques can 
also be leveraged prior to snapshotting, which can yield a more 
space-efficient solution.

Optimization of Memory and Storage Architecture

8.	 In the context of agent collaboration and communication, the 
future design of memory and storage systems can adopt a 
shared approach, enabling the sharing of memory and storage 
between agents. Such an architecture would enable agents to 
access a communal pool of memory and storage, thereby im-
proving the agents’ decision-making ability since one agent 
can benefit from other agents’ memory or storage.

Safety and Privacy Enhancements

9.	 In the realm of privacy, the exploration of advanced encryption 
techniques is vital for safeguarding data transmission within 
AIOS, thus maintaining the confidentiality of agent communi-
cations. Furthermore, the implementation of watermarking 
techniques could serve to protect the intellectual property of 
agent developers by embedding unique identifiers in outputs, 
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facilitating the tracing of data lineage.

In a nutshell, LLM-based agents stand as a motivating body of 
work that brings a broad spectrum of research opportunities. Each 
outlined direction can not only build upon the foundational ele-
ments of LLM-based agents but also contribute to the advancement 
of the field at large.

Conclusions
This paper proposes an architecture, demonstrating the po-

tential to facilitate the development and deployment of LLM-based 
agents, fostering a more cohesive, effective and efficient agent eco-
system. The insights and methodologies presented herein contrib-
ute to the ongoing discourse in both AI and system research, of-
fering a viable solution to the integration challenges posed by the 
diverse landscape of AI Agents.

Diverse future work can be built upon this foundation, exploring 
innovative ways to refine and expand the AIOS architecture to meet 
the evolving needs of developing and deploying LLM agents.
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