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Abstract
The recent advances in image style transfer have spurred significant interest in applying similar deep learning techniques to 

music style transfer. In this paper, we present a hierarchical decoder framework, where the encoder compresses variations in high-
dimensional datasets into a lower-dimensional code, and the decoder expands these variations to generate an output. We introduce 
Music-VAE, which addresses the challenge of modeling long-term musical structures. Our approach employs a novel sequential auto-
encoder with a hierarchical decoder, where classical music intended for interpolation with jazz is processed through the encoder to 
inform the generation of the output. Additionally, we introduce Melody RNN, which is capable of extracting musical style features to 
generate music in specific styles. To evaluate the effectiveness of our method, we propose an online system based on the Turing test, 
allowing users to compare the generated music with the original input to assess the quality and accuracy of style transfer.

Introduction and Motivation
Deep generative models are powerful neural network 

architectures that replicate data by estimating the probability 
distribution of existing data points. This capability enables the 
generation of “fake- but-realistic” data from learned distributions. 
Recent advancements have demonstrated success in generating 
realistic images with millions of pixels and audio with hundreds of 
thousands of timestamps. A variety of models have been developed, 
including Auto-Encoders, with recent breakthroughs in deep 
learning addressing music-related challenges using Recurrent 
Neural Networks (RNNs) and Variational Auto-Encoders (VAEs). 
In this paper, we primarily focus on RNN models and deep latent 
variable models. VAEs, in particular, are a deep learning technique 
for learning latent representations by modeling data with a directed 
latent-variable structure.

We introduce novel methods leveraging these models to 
advance the state-of-the-art in music style transfer, highlighting 
the effectiveness of hierarchical decoders and sequential 
auto-encoders in generating musically coherent outputs. Our  

 
approach underscores the potential of deep generative models in 
transforming the landscape of music generation and style transfer. 
Music Style Generation (Spring 2024),

( ) ( ) ( ), |p x z p x z p z=
   (1)

The advantage of these models is that they indirectly model 
both ( )|p x z and ( )p z , where z is the latent vector. Like regular 
autoencoders, VAEs compress relevant information about the input 
into a lower-dimensional latent code. They consist of an encoder 

( )|q z xλ , which approximates the posterior ( )|p z x , and a 
decoder ( )|p x zϑ , which parameterizes the likelihood 

( )|p x z
.

Most of the deep learning community has remained focused 
on fixed-dimensionality domains, such as images. Until recently, 
little attention had been given to adapting these ideas to music. 
Although VAEs have shown success in latent representation of 
short sequences of natural data, they have yet to be successfully 
applied to long-term sequences. To address this problem, we 
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introduce a novel sequential auto-encoder with a hierarchical 
recurrent decoder. In this paper, we focus on generating classical or 
jazz-style music. Popular classical music exhibits strong long-term 
structures, such as repetition and variation between measures and 
pieces. First, songs are divided into sections, which are further 
broken down into measures and beats. Additionally, music often 
involves multiple players generating music with strong inter-player 
dependencies. These unique characteristics make the hierarchical 
vector model ideal for our application.

The remainder of the paper is structured as follows: In Section 
2, we review related work in this area. Section 3 describes our data 
model and methodology. Section 4 presents our results, and Section 
5 concludes the paper.

Related Work
The domain of music style transfer leverages deep learning 

techniques to alter the stylistic attributes of musical pieces while 
preserving their core content. This technology has been inspired 
by the successes in image style transfer and has since evolved to 
address the unique challenges posed by the multi-modal and 
hierarchical nature of music representation. This literature review 
explores the historical context, recent advancements, challenges, 
and potential applications of music style transfer.

Historical context and early developments

Bharucha and Todd pioneered the use of Recurrent Neural 
Networks (RNNs) for generating music in the style of Bach as 
early as 1989, setting a foundational precedent for neural network 
applications in music creation Bharucha and Todd (1989) [1]. Since 
then, neural networks have steadily gained traction in this field, 
evolving to address various facets of music generation and style 
transfer.

Key models and methodologies

MusicVAE:

a) Description: MusicVAE is a recurrent Variational Autoencoder 
(VAE) with a hierarchical decoder designed to enhance 
sampling, interpolation, and reconstruction of musical 
sequences.

b) Significance: It addresses the challenge of modeling long-
term musical structures, which are crucial for maintaining the 
coherence of generated music.

c) Performance: Qualitative and quantitative experiments have 
demonstrated MusicVAE’s superior performance in generating 
stylistically coherent music compared to other models Engel 
et al. (2018) [2].

ToneNet

a) Description: ToneNet integrates three different models, with 
a sequence-to-sequence model as the baseline, compared 
against VAE-GAN and Seq-GAN architectures.

b) Findings: Seq-GAN achieved remarkable results due to the 
effective feedback mechanisms from the discriminator to the 
generator’s LSTMs, whereas VAE-GAN underperformed due to 
oversimplified assumptions about music representation Malik 
and Ek (2017) [3].

StyleNet

a) Description: This model uses Long Short-Term Memory 
Networks (LSTM) to generate music performances 
indistinguishable from human performances.

b) Challenges: While effective, StyleNet’s reliance on note 
velocity as the sole stylistic feature is insufficient for capturing 
the full spectrum of musical style, resulting in generated music 
that closely mimics but slightly deviates from the original 
Malik and Ek (2017) [3].

Recent advances and emerging trends

Hierarchical and multi-level representations

a) Advancements: The introduction of hierarchical decoders 
and multi-level representations has improved the ability of 
models to handle the complex structure of music, from beats 
and measures to entire compositions Dai et al. (2018) [4].

b) Impact: These methods allow for more nuanced and accurate 
style transfers, capturing the intricacies of different musical 
styles.

Transformer models and positional encodings

a) Innovations: The use of Transformer models with innovative 
positional encodings, such as stochastic positional encoding 
(SPE), has shown promise in better extrapolating musical 
sequences beyond training lengths, enhancing the generation 
of coherent and stylistically accurate music Cífka (2021) [5].

Self-supervised learning and disentanglement techniques

a) Approaches: Techniques such as vector-quantized variational 
autoencoders (VQ-VAE) with self- supervised learning 
strategies have been developed to disentangle timbre and 
pitch, allowing for more precise timbre transfer applications 
Cífka (2021) [5].

Challenges in music style transfer

Defining music style

a) Complexity: Music style is a multi-dimensional concept 
encompassing timbre, performance, and composition, making 
it challenging to model and transfer accurately Dai et al. (2018) 
[4].

b) Disentanglement: Successfully separating content and style 
remains a significant hurdle, requiring advanced techniques to 
ensure meaningful style transfer without content loss.

Long-term structure modeling
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a) Importance: Long-term dependencies in music, such as 
motifs and themes, are crucial for maintaining coherence but 
are difficult for models to capture effectively Cífka (2021) [5].

b) Solutions: Hierarchical and recurrent models have been 
proposed to address this, though further refinement is needed 
to achieve consistent results.

Evaluation metrics

a) Limitations: Developing objective metrics for evaluating style 
transfer quality is challenging due to the subjective nature of 
music perception Dai et al. (2018) [4].

b) Progress: Efforts are ongoing to create standardized 
evaluation protocols that can more accurately assess the 
fidelity and creativity of generated music Cífka (2021) [5].

Applications of music style transfer

Creative tools for artists

a) Co-creation: Music style transfer models serve as collaborative 
tools for artists, allowing them to explore new creative 
directions by transforming existing pieces or generating new 
ones from scratch Dai et al. (2018) [4].

b) Innovation: These tools can inspire novel compositions and 
remixes, broadening the scope of musical expression.

Automated music generation for media

a) Utility: Automated systems can generate background music 
for videos, advertisements, and games, tailored to specific 
stylistic requirements, thereby reducing production time and 
costs Cífka (2021) [5].

b) Customization: These systems can personalize music to 
match user preferences, enhancing the consumer experience.

Music education and analysis

a) Pedagogical Use: Music style transfer models can be used 
in educational settings to demonstrate the characteristics 
of different musical styles and aid in music analysis and 
composition studies Dai et al. (2018) [4].

Music style transfer is a burgeoning field within deep learning, 
characterized by rapid advancements and significant challenges. 
While substantial progress has been made in modeling and 
transferring musical styles, ongoing research is required to refine 
these models and address existing limitations. The potential 
applications of music style transfer are vast, spanning creative, 
commercial, and educational domains, underscoring its importance 
and impact on the future of music technology. In the next section, 
we will use Music-VAE and Melody RNN models to extract the 
features of Jazz and Classic music style.

Methodology

Dataset

Figure 1: Schematic diagram of Style Net.
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Figure 2: Data Representation.

The dataset used in this study has been taken from the paper 
“Neural Translation of Musical Style” Malik and Ek (2017) [3]. 
This dataset comprises approximately 350 piano-only Jazz and 
350 classical songs in MIDI format, with the average length of the 
training data being about 4 minutes. The primary objective is to 
train models to learn and generate music in the jazz style. During 
training, the MIDI files are converted to Note Sequences, a data 
format that is faster and simpler to use during modeling than MIDI 
files Mag. The input MIDI file is encoded into a P matrix, where 
T is the number of time steps in the song and P is the number of 
pitches in the instrument (for example, a piano with 88 keys has 88 
pitches). Each value in the matrix encodes note events using a 2-D 
vector for each pitch: [1 1] for note on, [0 1] for note sustained, and 
[0 0] for note off, as shown in (Figure1, 2) Malik and Ek (2017) [3].

To facilitate training, each file in the dataset has been quantized 
to align with a particular time interval (4/4time signature) and 
formatted to MIDI format 0. The dataset can be accessed from: 
https://medium.com/@suraj.jayakumar/ tonenet-a-musical-style-
transfer-c0a18903c910

Comparison of existing datasets for music style transfer

Table 1 provides a comparison of existing datasets commonly 
used for music style transfer. Each dataset varies in the genres it 
covers, the format of the music files, the number of songs included, 
and the average length of the pieces. This comparison helps 
highlight the diversity and scope of datasets available for training 
and evaluating music style transfer models.

Table 1: provides a comparison of existing datasets commonly used for music style transfer. Each dataset varies in the genres it cov-
ers, the format of the music files, the number of songs included, and the average length of the pieces. This comparison helps highlight 
the diversity and scope of datasets available for training and evaluating music style transfer models.

Dataset Genres Format Number of Songs Average Length

Neural Trans-lation of Musical Style Malik and Ek (2017) Jazz, Classical MIDI 700 (350 each) 4 minutes

MusicNet Thickstun et al. (2017) Various (Clas-sical Focus) MIDI, Audio 330 Varies (5-10 minutes)

Lakh    MIDI Dataset Raffel and Ellis (2016) Various MIDI 176,581 Varies

MAESTRO Hawthorne et al. (2018) Classical Piano MIDI, Audio 1,184 5-10 minutes

NES-MDB Donahue et al. (2018) Chiptune/8-bit MIDI, Audio 497 Varies

JSB Chorales Allan and Williams (2005) Bach Chorales MIDI 382 1-2 minutes

Melody-RNN

The Recurrent Neural Network (RNN) has proven to be an 
effective model for predicting and generating sequential data, 
displaying dynamic behavior in sequences. This paper employs 

two methods from Magenta’s Melody-RNN: the basic RNN and the 
lookback RNN Waite. Both utilize Long Short-Term Memory (LSTM) 
architecture as the RNN cell to handle longer sequences, but they 
differ in the format of inputs and labels, allowing melodies to be 
encoded in different representational formats.
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In the basic RNN, the input is a vector representing the previous 
event, and the label is a vector representing the next event. The 
lookback RNN, however, incorporates additional events to provide 
more context from previous melodies and the current position 
within measures (assuming a 4/4-time signature). This allows 
the model to understand event patterns and identify repetitive 
musical properties more easily, such as mirrored melodies Waite. 
Specifically, the input includes the current event, events from the 
previous 1 and 2 bars, a binary representation indicating whether 
the current pattern repeats from previous bars and beats.

To provide extra information, the labels also consider two 

events: binary representations of whether the melody is repeating 
from 1 bar ago and whether it is repeating from 2 bars ago. If the 
current melody is repeating from previous bars, its label will be set 
to the same label as the previous bars. These additional labels help 
reduce the complexity of the training model by aiding the learning 
of musical patterns. The output consists of two probabilities: one 
for each note that is chosen to be played and one for the note’s 
continuity when it is on. The Beam Search algorithm is then used 
to find the sequence of notes with the highest probability, resulting 
in the musical generation. The framework of Melody RNN is shown 
in (Figure 3).

Figure 3: Melody RNN.

Music-VAE

In Music-VAE, we have used a recurrent encoder and decoder 
same as the model used in Sketch RNN (Ha and Eck (2017) [6]. 
Generally, the encoder ( )|q z x  is a recurrent neural network, 
that takes { }1 2 3, , ,.... tx x x x x=  as input sequence and produces 
hidden states 

1 2 3, , ,.... th h h h . The decoder produces the output 
sequence { }1 2 3, , ,.... ty y y y y= . The diagram of our model is 
shown in (Figure 4).

Bidirectional encoder

For the encoder ( )|q z x , we have used a two-layer 
bidirectional LSTM network. We obtain forward ht and backward 
ht from bidirectional LSTM layer by processing input sequence

{ }1 2 3, , ,.... tx x x x x= . Forward hT and backward hT are 
concatenated to produce the final hidden state and from final h, µ 
and σ are produced:

h TW h bµ µµ = +
    (2)

( )( )log exp 1h TW h bσ σσ = + +
  (3)

Where Whµ, Whσ, bµ, bσ are weight matrices and bias vectors 
respectively.

Using a bidirectional recurrent encoder helps to have a 
parametrization of the latent distribution

long-term context about the sequence of the input (Adam 
Roberts et al. (2018)) [7].

Hierarchical decoder

The decoder processes the latent vector z and produces to 
generate the output sequence. The simple decoder is not efficient 
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for long sequences so based on the paper “A Hierarchical Latent 
Vector Model for Learning Long-Term Structure in Music”, (Adam 
Roberts et al. (2018)) [7] which proposed a novel hierarchical 
RNN for the decoder, we implemented our model. Assuming that 
the input sequence x can be divided into U subsequences yu with 
endpoints iu so that,

{ }, 1, 2 1,..., 1u iu iu iu iuy x x x x+ + += −
  (4)

{ }1 2, ,..., ux y y y=
    (5)

Where iU+1 = T. Then latent vector z is passed through a fully 
connected layer to get the initial state of conductor RNN which 
produces { }1 2 3, , ... uc c c c c= for each subsequence. Now each 
vector c is individually passed through a fully connected layer 
followed by tanh activation to generate the initial state for the 
decoder. The decoder RNN produces a sequence of distributions 

over output tokens for each subsequence yu. These output 
subsequences are also concatenated with previous output and 
passed as input to the decoder RNN.

Interpolation

For creative purposes, based on the paper “A Hierarchical Latent 
Vector Model for Learning Long- Term Structure in Music”, (Adam 
Roberts et al. (2018)) [7], we carried out interpolation between 
350 classic melodies dataset (A) and 350 jazz melodies (B), with 
SoftMax temperature 0.5 to sample the intermediate sequences. 
We choose “Data” interpolation as our baseline model and compare 
the results with interpolations from flat decoder and hierarchical 
decoder. In Figure 5, relative LM cost and hamming distance for the 
baseline model, flat decoder, and hierarchical decoder are marked 
with green diamonds, yellow circles, and red squares respectively 
(Adam Roberts et al. (2018)) [7]. In the baseline model, an element 
from either sequence a or b is chosen for each time step by sampling 
the Bernoulli random variable with parameter α.

Figure 4: Schematic of hierarchical recurrent variational auto-encoder, (Music VAE).

i.e, ( )t tp x b α= = , ( )1t tp x a α= −
Hamming distance is the proportion of timestep predictions 

that differ between the interpolation points and sequence A. As we 
can see in the top graph of (Figure 5), the hamming distance for the 

baseline model varies linearly, following the mean of the Bernoulli 
distribution. For flat and hierarchical decoders hamming distance 
varies smoothly and is less like sequence A. Because construction 
doesn’t remain in one mode and suddenly jumps to another mode.
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Figure 5: Interpolation (Adam Roberts et al. (2018)).

The relative LM cost for each interpolated sequence is given by, 
( )( )/ 1B AC C Cα α α+ −  where Cα is language model cost and CA 

and CB are costs for endpoint sequences A and B. The sudden bump 
for the baseline model shows a lower probability for interpolated 
sequences than the original melodies. The flat decoder does 

better than the baseline but the hierarchical decoder produces 
interpolations of almost equal probability to the original melodies. 
(Figure 6) shows the interpolation of classic melody A and Jazz 
melody B.

Figure 6: Interpolation.

Results

Experiments

We trained Melody-RNN models with Basic RNN and Lookback 
RNN respectively by feeding Jazz/Classical music dataset as input. 
(Figure 7), shows our result of the loss and accuracy graphs in 
different models and dataset for 700 steps, which took about 2-4 
hours to train on a CPU for each model. Those models can be trained 
well after training 1000 steps, whose accuracy is all above 80%. 
Then we randomly give the model a single note as input to start 
generating the rest of them to see whether the model can generate 
a music having certain style we want. Also, we are interested in 
whether the model can generate specific style music based on 
other style melodies, so we also give the model a short different 

style midi file as a priming melody. For example, we used classical 
music to train the model and gave jazz music as the primary input 
to generate music.

Compared to existing models by feeding the same short midi 
file, we can see in the example in (Figure 8), that the generated 
music from lookback RNN has more musical, which is close to the 
input melody, than the one from basic RNN. However, they rarely 
generate style from training data but only style from input. Even 
though the loss term looks good in the training part, it does not 
mean we can always get good performance in the generating part. 
Some of them are recognized as machines, even noises, which will 
be discussed in the next section. We also trained the Music-VAE 
model to model 2-bar monophonic music sequences with jazz and 
classical datasets. However, it took longer time to train the model 
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than RNN. Therefore, we only got the trained model with less than 
50 training steps (about 2-3 days) on the CPU. We used our trained 
model to generate music in 2-Bar Melody Model part on Music-VAE 

Colab (https://colab.research.google.com/notebook#fileId=/v2/
external/notebooks/magenta/music_vae/music_vae.ipynb).

Figure 7: Loss (left) and Accuracy (right) graphs for model trained on different settings (Basic- RNN/Lookback-RNN, Jazz/
Classical dataset).

Figure 8: Generated Music from Basic RNN (left) and Lookback RNN (right).

It   did   gen- erate some interesting music and interpolate 
two musical melodies (Figure 9). Those music demos will be 
provided online (https://drive.google.com/drive/folders/ 
1MBX7GUFXTRLVCBSBYlr7Lth2bEqujdAJ?usp=sharing), but 

music from Music-VAE 2-Bar Melody Model is too short (about 3-5 
seconds) to allow people to recognize the human-performance and 
the style of music. Therefore, we only focus on melody RNN for 
evaluation in the next section.

Figure 9: Interpolation of Jazz Music and Classical Music.
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Evaluation

Several projects have attempted to evaluate music generation 
models. Based on the results of previous studies, the most effective 
way to evaluate generated music is to maintain the integrity of 
beats and pitches, as confirmed by human assessment. Therefore, 
in this paper, we employed the Turing test to achieve this goal. We 
designed two listening tests: the “Identify Human” test and the 
“Identify Style” test, to compare generated melodies with human-
composed ones. Participants were asked to rate the likelihood of 
human performance on a Likert scale and to identify the style of 
each piece of music, which was randomly sampled from human or 
machine compositions. Fifteen participants evaluated our model 
before submitting the project. We provided four samples each of 
human, generated classical, and generated jazz music.

For the “Identify Human” test, participants rated the 
performance on a Likert scale with five levels. For the “Identify 
Style” test, participants chose from five style options. To summarize 
the survey results in an understandable manner, (Figure 10) (left) 
shows the combined totals of “most likely” and “likely” responses 

as the “likely” label, and the combined totals of “most unlikely” 
and “unlikely” responses as the “unlikely” label. The “don’t know” 
responses are labeled as “can’t determine.” For the “Identify Style” 
test, ((Figure 10) (right) shows the combined totals of correct style 
identifications as the “correct” label and the combined totals of 
incorrect style identifications and noise as the “incorrect” label.

The results of the “Identify Human” test ((Figure 10), Left) 
indicate that our model still struggles to compete with human 
performance, with 70% of respondents selecting “unlikely.” This 
is attributed to several issues, such as the inability to generate 
multiple notes simultaneously, lack of rhythmic variation in the 
generated music, and the perceptible difference in quality between 
generated and human-composed music. The “Identify Style” test 
((Figure 10), Right) also shows subpar performance, indicating 
that the model does not sufficiently capture the characteristics of 
musical styles to generate convincing melodies. The same issues 
identified in the “Identify Human” test likely contribute to these 
results as well.

Figure 10: (Left): “Identify the Human” Survey Results, (Right): “Identify the Style” Survey Results.

Conclusion and Future Work
This paper demonstrates the application of a multi-layer 

LSTM model to generate music in two different styles. While the 
model shows promise, it requires significant improvements to 
generate stylistically accurate melodies. One key limitation is the 
model’s inability to generate polyphonic music, as it currently 
only handles monophonic melodies. To address this issue, we 
propose inte-grating the model with the “Biaxial RNN” developed 
by Daniel Johnson Johnson (2017) [8], which can handle multiple 
notes simultaneously and maintain temporal and note pattern 
invariance, potentially enhancing the model’s performance. 
Despite its limitations, the model provides an interesting tool for 
co-creative music composition. For instance, the Google Magenta 
Cyborg Collaboration demonstrates how AI can inspire and assist 
human musicians in creating new melodies Magenta (2019) [9]. 

This highlights the potential for AI models to support and augment 
human creativity in music.

Furthermore, Google has introduced several advanced melody 
models within the Magenta program, such as Attention RNN, 
Improved RNN, and Performance RNN. These models incorporate 
more sophisticated architectures and techniques, potentially 
offering superior performance in extracting stylistic characteristics 
and generating music. Future work will involve experimenting 
with these advanced models, comparing their effectiveness, and 
identifying the best model for generating stylistically coherent 
melodies.

In addition to exploring new models, future research will 
also focus on enhancing the current evaluation methodologies. 
While the Turing test and listening tests provide valuable insights, 
developing more objective and quantitative evaluation metrics will 
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be crucial. This will ensure a comprehensive assessment of the 
models’ performance and guide further improvements [10-16].

Overall, while there are challenges to overcome, the progress 
made so far demonstrates the potential of deep learning models in 
music generation. Continued research and development in this area 
will likely yield increasingly sophisticated tools that can create, 
inspire, and transform music in innovative ways.
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