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Abstract
Parallel processors have undergone a profound transformation in recent years, transitioning from homogeneous general-

purpose units to a heterogeneous ecosystem comprising a mix of general and specific-purpose cores on a single chip. This shift, 
driven by the demands of Artificial Intelligence (AI) and computer graphics applications, has not only altered the architecture of 
processors but has also introduced novel challenges in optimizing algorithms for parallel execution. In this brief review, we delve 
into the evolution of parallel processors and explore the research challenges arising from this shift. We will be focusing on the 
particular case of GPUs, where tensor cores and ray tracing cores have created new research opportunities on finding what other 
applications, different from AI and graphics, could be reformulated as a series of tensor/ray-tracing core operations and further 
accelerate their performance compared to their regular GPU implementation.

From general purpose to specific purpose
Parallel computing gained a strong relevance with the 

introduction of the first dual-core CPU in the early 2000s. From 
there, parallel architectures as well as research in parallel computing 
achieved significant milestones, such as the possibility to pack 
dozens of CPU cores in a single chip, new parallel algorithms and 
the development of parallel programming languages and tools [1]. 
Today we have a large ecosystem of parallel processors sitting in 
many of the devices we use every day; from laptops and cellphones 
to TVs and Cars. In the last couple of years, with the surge of 
artificial intelligence and videogames, parallel computing has 
become even more relevant, as it is the technological bed for many 
states of the art applications that require high performance. During 
these last 5-6 years, the computing community has witnessed how 
parallel processors have evolved from being an homogenous set of 
general purpose cores, to an heterogenous set that now includes 
specific- purpose cores. A notable case study in this technological 
transformation is the Graphics Processing Unit (GPU). Around 
2006, when NVIDIA announced the CUDA programming platform 
[2], GPUs transitioned from being specialized hardware for  

 
graphics rendering to general purpose accelerators. From that 
moment GPUs became an attractive device for doing very fast 
scientific computations. Nearly a decade later, with the surge 
of Artificial Intelligence (AI), the community realized that the 
performance of GPUs was not high enough to properly handle 
the new Deep Learning models being developed. For this reason, 
near 2017, NVIDIA introduced tensor cores [3-12] inside the chip 
to further accelerate the performance of all AI applications. GPU 
Tensor cores are Application Specific Integrated Circuits (ASICs), 
or simply specific-purpose cores that perform fast matrix multiply 
accumulate (MMA) operations. With Tensor cores, AI applications 
can further accelerate their performance by an extra order of 
magnitude, allowing the training of large models to go down from 
months to a few days. As of 2024, tensor cores are present in 
NVIDIA [13], AMD [6] and Intel GPUs [14], and are slowly becoming 
part of the CPUs as well. The videogame industry also had its 
revolution recently. In 2018 (one year after the inclusion of tensor 
cores) NVIDIA designed the Ray Tracing (RT) core to be inside 
their GPU chips. RT cores enable the processing of the ray tracing 
algorithm in real-time, bringing the possibility for interactive 3D 
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applications to feature photorealistic lighting. Ray tracing [7] is one 
of the most computationally demanding tasks in 3D rendering as it 
requires thousands of rays to be traced and checked in order to find 
which triangles they hit. The difficulty comes because it is a search 
problem; for each ray, one needs to find which triangle has been hit 
by it. Doing it by brute force would mean checking all triangles of 
the scene for each ray, making it very inefficient. Space partitioning 
trees [9] and other variants of trees have been implemented in 
GPU [8], although the nature of trees introduce a difficult irregular 
memory accesses for the GPU architecture which is limited in this 
aspect. As a solution to this problem, an RT core offers a hardware 
implemented Bounding Volumne Hierarchy (BVH) tree data 
structure [15], allowing a ray to find ray/triangle intersections 
(other custom primitives as well) overall significantly faster than 
the software-implemented alternatives. Due to the success of the 
Ray Tracing core, as of 2024, all major GPU companies include them 
in one or other equivalent form.

New Research Opportunities
The recent inclusion of specific purpose cores in parallel 

accelerators created the research question; is it possible that other 
applications, different from AI and Graphics, could also benefit from 
the new tensor cores and RT cores? The answer is yes and this has 
opened a whole new research field in GPU Computing; to find ways 
to reformulate common computational patterns, even ones already 
adapted for traditional GPU Computing, now as a series of tensor/
ray-tracing operations and obtain an additional performance 
lift. When programming tensor or RT cores, a great part of the 
pipeline is a black box, which is where the hardware-implemented 
functionality takes part. Therefore, adapting a computational 
pattern to tensor/RT cores greatly involves coming up with a new 
statement of the computational pattern, now formulated as a series 
of tensor/RT operations. Successful research has been done in 
the recent years. In the case of tensor cores, new ways have been 
proposed to further accelerate arithmetic reductions [16, 13, 5-12, 
17-21] prefix sum [4-12, 17-21, 22-29] Fast Fourier Transform 
[22], [10], [23], [5], stencil computations for PDE simulations 
[11] and even fractals [14, 25-24]. In general, all of these works 
achieve significant higher performance when compared to doing 
it traditionally in GPU. Moreover, many times this benefit in 
performance also comes with less energy consumption, making it 
a more energy efficient approach as well. In the case of Ray Tracing 
cores, a significant amount of works can also be found. One of the 
most relevant research topics have been on finding ways to compute 
the nearest neighbors of many particles in parallel, using the high 
search speed of RT cores [20, 26-28]. Other works include a fully 
RT core approach for answering the Range Minimum Query (RMQ) 
problem [17], which consists of finding the minimum in a given 
interval [i,j] of an unordered array. In the case of geometry, point 
location has been solved with RT cores as well [18]. More recently, a 
clustering approach has been proposed that leverages RT cores [19]. 
There are still several candidate open problems for being adapted 
to tensor or RT cores. The key for bringing new ideas to tensor 

cores is find ways to group the arithmetic operations of a process 
as a series of matrix multiply accumulate (MMA) operations. If this 
can be done, and the matrices involved can be populated almost 
entirely with useful data, then there is a strong chance that the 
tensor cores can provide a performance boost. There are technical 
limitations though, for example the MMA operation offers several 
data types such as FP16, TF32, BF16 and INT8, among others. 
The less the precision, the faster the performance, therefore one 
should be cautious on what datatype to work with, ensuring both 
correctness and speed. In the case of RT cores, the key is to realize 
that the ray-triangle intersection is actually a search tool that when 
properly used, can solve non-graphical problems. The two major 
challenges when adapting a computation to RT core are i) to find a 
proper 3D geometrical representation of the input data, and ii) to 
find a ray launch scheme such that when colliding with the input 
data (triangles), it answers the intended search query. If these two 
challenges can be overcomed, then the problem may be computed 
with RT cores. Future parallel processors may keep bringing 
new specific-purpose cores to the table, creating new research 
challenges. Moreover, this research is not only limited to GPUs, but 
to all the current processors that are adding specific-purpose units 
in their chip, including embedded devices as well.
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