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Abstract

The objective of this article is to thoroughly review the published literature, and to amalgamate and summarize the current state 
and disparate knowledge regarding classification, preparation methods, functionality and industrial applications of polymer films 
and coatings and in so doing, not only was thorough review of current knowledge, but current gaps in the knowledge base were 
also identified and highlited. New approaches in developing and utilization of edible fims and products having potential in food 
preservation are covered. Researches into the manufacture of edible fims using a wide range of natural polymers: mono and mixed, 
linear and crosslinked including hydrophilic and hydrophobically modified polyelectrolytes using different technologies have been 
included.
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Food Packaging
Food packaging is meant for protecting food from external 

influences as well as to provide mechanical supporting for non-
solid food. The principal objectives of food packaging is to retard 
deterioration, extend of shelf-life, and maintenance of quality and 
safety of the packaged food.

In general, packaging options have expanded from the traditional 
materials of glass, metal and paper and synthetic polymers 
engineered to meet particular requirements. Petrochemical-based 
plastics have advantages in their availability in large quantities at 
a low cost and good functionality such as tensile and tear strength. 
However, increased use of synthetic packaging films based on 
petrochemicals has led to serious ecological problems due to their 
total non-biodegradability. Thus, consumer demand has shifted 
to safe and eco-friendly biodegradable materials, especially from 
renewable agriculture by-products and food processing industry 
wastes. Motivated to this, new and novel food-grade packaging 
materials and technologies have been and continue to be developed 
based on bio-based polymers.

Bio-based polymer for food packaging
It is well established that polymers have low unit weight 

and good shear strength characteristics and thus hold promise  

 
for flowable fill applications. Use of natural biopolymers for 
diversified applications in life sciences has several advantages, 
such as availability from replenishable agricultural or marine food 
resources, biocompatibility, biodegradability, therefore leading 
to ecological safety and the possibility of preparing a variety of 
chemically or enzymatically modified derivatives for specific end 
uses. The development and characterization of edible films and 
coatings have increasly attracted the attention of biochemists, 
biotechnologists, and physicists, among others, mainly to the large 
variety of applications served by bio-based polymers [1,2].

Some polymers derived from natural sources have been 
engineered for certain products and are already in the market place. 
Some of these polymers are edible and have played and continue 
to play an instrumental role in food throughout history and in the 
food, pharmaceutical and other industries. Many of these polymers 
are used alone or in combination with synthetic polymers to create 
a class of active packaging commonly referred to as edible films or 
coatings [3].

Edible films and coatings afford numerous advantages over 
conventional non-edible polymeric packaging. They can reduce the 
complexity of the food package and, even if they are not consumed 
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with the packaged product, can contribute to the reduction of 
environmental pollution by virtue of their biodegradable nature. 

Edible films and coatings: preparation, application and 
functionalities

Edible coatings can be prepared using two-process approaches 
[4]. The dry-process approache, such as thermoplastic extrusion, 
based on the thermoplastic properties of polymers when plasticized 
and heated above their glass-transition temperature in low water-
content conditions. The disadvantage of extruded films is that they 
cannot be used to cover irregular surfaces. The second approach 
is the wet-process approach, which is based on a film-forming 
dispersion in which polymers are first dispersed into a liquid 
phase, and then dried at the end of the application. The wet process 
permits the application of coating in liquid form directly onto food 
products by dipping, brushing or spraying [5].

It is well known most of the foods are susceptible to mechanical 
damage, physiological deterioration, water loss and decay during 
storage. Reduction in turgidity as a result of water loss causes 
shrivelling and faster depletion of nutrients and organoleptic 
properties, and is a major cause of deterioration. Cold storage of 
some foods is common, but other foods such as fruits are usually 
stored in markets at room temperature between harvest and 
consumption. For this reason, product losses are very high. With 
the use of edible coatings and cold storage, spoilage could be 
minimised. Edible films have been applied to fruits, vegetables [6], 
meat, poultry, grains, and confectionery products, heterogeneous 
foods, any of which can be fresh frozen, cured or processed. 

 The most important functionalities of an edible film or coating 
include control of mass transfers, mechanical protection, and 
sensory appeal. Control of mass transfers involves preventing foods 
from desiccation, regulating microenvironments of gases around 
foods, and controlling migration of ingredients and additives in 
the food systems. Edible coatings on freash foods can provide an 
alternative to modified atmosphere storage by reducing quality 
changes and quantity losses through modification and control of 
internal atmosphere of indivitual foods. Modification of internal 
atmospher by the use of edible coatings can increase disorders 
associated with high carbon dioxide or low oxygen concentration, 
even though ingress of oxygen may reduce food quality owing to 
oxidation of the aroma components in the food. Also edible film 
with greater water vapour permeability is desirable for freash 
products, although extremely high water vapor permeability is 
also not desirable as it can result in excessive moisture loss of 
fruit during storage. Adequate mechanical strength of an edible 
film is necessary to protect the integrity of packaging throughout 
distribution. The sensory properties of an edible coating or film are 
a key factor for acceptance of final products. 

One of the most important factors in the preparation of edibe 
films regards the choice of ingredients. Edible coatings and films 
based on polysaccharides a class of natural macromolecules, 
have the tendency to be extremely bioactive, and are generally 
derived from agricultural feedstock or crustacean shell wastes. 
Polysaccharides have been mainly used for food covering due to 

their excellent selective permeability to oxygen and carbon dioxide. 
These low-cost films are mostly prepared with cellulose and its 
derivatives such as ethers and esters, starch, pectins, and gums 
which are of applications in food preservation. Edible coatings 
based on cellulose have been extensively applied to delay loss of 
quality in fresh fruit products such as tomatoes, cherries, fresh 
beans, strawberries, mangoes and bananas. Chitosan is another 
polysaccharide widely used in the post-harvest decay control of 
fresh fruits and vegetables. Chitosan is derived from chtin which is 
next to cellulose [7]. 

Polysaccharides capable of forming gels in water are common 
throughout the plant kingdom. Some of them, such as the pectins 
in higher plants, carrageenans and agarose in algae, algal and 
bacterial alginates and xanthan, have been investigated in great 
detail. Mucilages are generally hetero-polysaccharides obtained 
from plant stems such as the waste product cactus stems. Cactus 
mucilage may find applications in food, cosmetics, pharmaceutical 
and other industries [8]. The complex polysaccharide is part of 
dietary fibre and has the capacity to absorb large amounts of water, 
dissolving and dispersing itself and forming viscous or gelatinous 
colloids. An important point in the choice of the cactus mucilage as 
a coating is its low cost. 

Polysaccharides edible coatings showed different 
functionalities. Pectin-based edible coatings containing green 
tea leaf extract powder applied on cooked pork patties irradiated 
by Gamma ray showed decreased lipid oxidation and increased 
radical scavenging properties [9]. Edible coatings made from 
hydroxypropyl methylcellulose containing surfactant mixtures 
in aqueous and hydroalcoholic media were developed. The water 
vapour permeability of the films were increased with hgh viscosity, 
low surface tension, great lipid particle size,and high flocculation 
rate of the film-forming dispersions [10]. Composite edible films 
using polysaccharide mixtures of ager- starch- arabinoxylan, shows 
that agar can to be an advantageous component that contributes 
to the improvement of the mechanical properties of starch films. 
Besides, arabinoxylan could be considered as an additive for 
ager based films to increase moisture barrier efficiency [11]. 
Hydroxypropylmethylcellulose edible coatings containing an 
ethanolic extract of propolis were developed and applied to grapes 
fruit. Propolis incorporation was found to increase the color 
luminosity of the grapes and to enrich the nutritional characteristics 
of the coated product [12]. Intensive work has been carried out by 
on different kinds of polysaccharides including cellulose derivatives 
and other composite coatings. Promising results were obtained by 
their applying on fruits and vegatables within a thermomechanical 
pre-treatment step (DIC: Instant Controled Pressure Drop Process) 
[13]. Rich information in this concern is available in the literature 
[14-16].

On another hand, proteins, such as casein, whey proteins and 
corn zein, have also been used as in edible coatings a moisture 
barrier since these proteins are abundant, cheap and readily 
available. Protein-based films have been prepared with both 
vegetal and animal proteins, including corn zein, soy protein, wheat 
proteins (gluten, gliadin), peanut protein, gelatine, casein, and milk 
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whey proteins [17]. Food protein can supplement the nutritional 
value of the food , they may act as natural vehicles, evolved to 
deliver essential micronutrients (e.g. calcium and phosphate) 
and building blocks (e.g. amino acids), as well as immune system 
components (e.g. immunoglobulins, and lactoferrin [18]. Besides, 
food proteins can be used in coating formulations to develop easily 
degradable packaging, non-aggressive to the environment, capable 
to be applied to different kind of foods including vegetables, fruits, 
poulitry and fish products [19]. Protein-based edible films are 
attractive because they have impressive gas barrier properties 
compared with those prepared from lipids and polysaccharides. 
However, the poor water vapor resistance of protein films and their 
lower mechanical strength in comparison with synthetic polymers 
limit their application in food packaging. Hence, improvement 
of edible protein film properties has been investigated to seek 
suitable applications. The methods used to improve the mechanical 

strength and moisture barrier properties of protein based edible 
coatings are reviewed else where [20].

Inspite of the potential of multi-funtional properties of 
polysaccharides and proteins, the hydrophilic nature of these 
biopolymers limits their ability to provide the desired edible 
film functions. Several approaches to improve water barrier and 
mechanical properties of these films include incorporation of 
hydrophobic compounds, optimisation of interaction between 
polymers and formation of cross-links. Lipid compounds include 
neutral lipids of glycerides which are esters of glycerol and fatty 
acids, and waxes which are esters of long-chain monohydric 
alcohols and fatty acids, are commonly utilized in edible coatings. 
They are added to food coatings to impart hydrophobicity [21]. 
Figure 1 shows the various work concepts in manufacturing, 
characterization and properties of edible coatings.

Figure 1: Flow chart showing the work concepts of edible films and coatings.

Classification of Edible Films and Coatings
Edible films and coatings, can be divided into proteins, 

polysaccharides, lipids and composites. They are defined as thin 
layers formed on a food surface as a coating, or placed (pre-formed) 
between food components. Their purpose is to extend the shelf-life 
of the food product and provide a barrier against hazards. They 
can retard moisture migration and the loss of volatile compounds, 
reduce the respiration rate, and delay changes in textural 
properties. Also, they are excellent barriers to fats and oils, and 
have a high selective gas permeability ratio CO2/O2 as compared to 
conventional synthetic films [14,22]. They can also act as carriers 
of food additives such as antioxidants [23] and/or antimicrobial 

agents [24] and can improve mechanical integrity or handling 
characteristics of the food. Stand-alone edible films with good 
mechanical properties could replace synthetic packaging films for 
specific applications. 

Water- insoluble edible coatings
Over the last ten decades, extensive researches have been 

undertaken on the use of aqueous-based film coatings. Potential 
sources, performance and applications of these coatings have 
been reviewed throughout huge number of publications, but 
water-insoluble edible coatings have gotten less attention. 
Ethyl cellulose and other polymer composites of polysaccarides 
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with improved water barrier properties have been developed 
throughout formulating of biopolymer composites based on the 
hydrophilic polysaccharides and reducing the hydrophilic nature of 
the polysaccharides by different methods including incorporation 
of hydrophobic compounds, interaction between the biopolymers 

and formation of cross-links. 

Pectin, chitosan and sodium alginate are selected as the 
examples of hydrophilic polyelectrolytes. The chemical structures 
of chitosan, pectin and algenic acid are shown in Figure 2.

Figure 2: The chemical structures of chitosan, pectin and algenic acid.

The hydrophlic polyelectrolytes
Pectin

Pectin is one of the proportionally largest materials in citrus 
by-products. It is a natural, non-toxic and anionic polysaccharide 
extracted from cell walls of most plants and used as gelling and 
thickening agents in food technology and as a drug carrier in 
pharmaceutical research [18,25]. It is predominantly a linear 
polymer of mainly α-(1→4)-linked d-polygalacturonic acid residues. 
They are structurally complex and heterogeneous polyelectrolytes 
consisting of linear regions of (1→4)-α-d-galacturonosyl units 
and their methyl esters, interrupted in places by (1→2) α-l-
rhamnopyranosyl units. The degree of methoxylation (DM) is used 
to classify the pectins as high methoxyl pectins (DM>50) and low 
methoxyl pectins (DM<50). The application and evaluation of 
pectin-based coating on the kinetics of quality change in stored 
fruits using a pre-established coating process was highlited in 
literature [26].

Chitosan

Some polymers are inherently antimicrobial and have been 
used in films and coatings such as the cationic polymer chitosan 
since charged amines interact with negative charges on the cell 
membrane, causing leakage of intracellular constituents [27]. 

Chitosan has been used as a coating and appears to protect fresh 
vegetables and fruits from fungal degradation. Although the 
antimicrobial effect is attributed to antifungal properties of chitosan 
against pathogenic and spoilage micro-organisms, including fungi, 
and both Gram-positive and Gram-negative bacteria [28], it may be 
that the chitosan acts as a barrier between the nutrients contained 
in the produce and microorganisms [29] as well as as a carrier in 
drug delivery [30]. In addition, chitosan-based antimicrobial films 
have been used to carry bioactive molecules [31].

Chitosan has another one important property that it can 
undergo chemical modification very easily. This property is 
attributed to the presence of free amino groups, which increases 
the reactivity of the polymer. Chitosan can therefore be readily 
modified by reactions at the amino groups. The use of the optimal 
concentration of glycerol, in chitosan-based films, improved the 
mechanical properties of the films and allowed to obtain the best 
water vapour permeability value. The addition of the optimum 
content of tannic acid, to the chitosan matrix led to form a more rigid 
structure because it acted as a crosslinking agent [32]. Chitosan –
Methyl cellulose combined biodegradable films were found to be 
of good water vapor barrier properties and have the possibility 
to tailor mechanical and solubility properties, within a range, 
based on polymer ratio composition. This property has helped 
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researchers to improve the chemical and mechanical properties 
of chitosan to many possible applications in food, pharmaceutical 
and cosmetic industry [33]. A water-soluble chitosan derivative, 
O-fumaryl-chitosan was prepared by using the selective partial 
acylation of chitosan and fumaric acid in the presence of H2SO4, the 
resulted polymer had good solubility in a wide pH range, which was 
related to the degree of substitution. It showed higher microbial 
activity, giving it the potential of becoming alternatives for food 
preservation instead of some harmful bactericides [34]. Further 
more, chitosan and poly (DL-lactide-co-glycolide) were used to 
fabricate biodegradable porous scaffolds for applications in tissue 
engineering by thermally induced phase separation technique [35]. 
Edible film made of cassava starch, glycerol and chitosan showed 
that optimal transparent white films with no bubbles were obtained 
on the temperature variable 80 °C and 3 hours of drying time [36]. 
Chitosan from meti shell showed potential use as an edible film 
polymer with desirable properties [37].

Alginate

Alginate was originally thought to consist of a uniform polymer 
of mannuronic acid. However later studies showed that alginic 
acid is a linear copolymer of 1,4-linked β--mannuronic acid (M) 
and α--guluronic acid (G). Algenic acid it is a high-molecular-
mass polysaccharide extracted from kelp. It has been shown that 
the G and M units are joined together in blocks and as such, three 
types of blocks may be found: homopolymeric G blocks (GG), 
homopolymeric M blocks (MM) and heteropolymeric sequentially 
alternating blocks (MG). 

Alginate based coatings have potential applications in edible 
coating field, among which, they are used as carriers for antioxidants 
for shelf-life extention of fish [23] and as antibrowning agents for 

fresh-cut fruits [16].

Hydrophobically modified polyelectrolytes

When aqueous systems of different biopolymers are mixed 
together, the behavior of the individual polymer is usually affected 
and a synergism between the polymers emerges. The interaction 
between unlike chains can be either more favorable or less 
favorable than interactions between like chains of each type. Mixed 
biopolymers are used in a wide range of applications, because of 
their ability to interact synergistically and provide material with 
controlled properties [1].

Water soluble polymers are well-known for their thickening 
properties in aqueous solutions. High molecular weight polymers 
or polyelectrolytes are used as viscosifiers, but these polymers 
could exhibit a loss of their viscosifying properties when they are 
submitted to strong mechanical deformations, increasing ionic 
strengths or high temperatures. To overcome these drawbacks, 
incorporation of a few hydrophobic groups in a hydrophilic 
macromolecular chain can lead to profound changes in the physico-
chemical behavior of the parent macromolecule, because of intra- 
and/or intermolecular associations of the hydrophobic groups 
[38,39]. The result is a water soluble system which self-aggregates 
in water, resulting in thickening effects. A simple example of 
hydrophobically modified polyelectrolytes is one that consist of a 
long hydrophilic chain (a polysaccharide such as starch) to which 
small amounts of hydrophobic substituents (a protein) are attached 
or incorporated [40]. The attachment of hydrophobic side chains 
onto a polyelectrolyte backbone can increase emulsion stability and 
heat and freeze stability. Figure 3 shows the chemical structures of 
hydrophobic modified chitosan and hydroxyethyl cellulose.

Figure 3: Hydrophobically modified Chitosan, b: Hydrophobically modified Hydroxyethyl cellulose.
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 The hydrophobic modified biopolymers are able to associate 
and form highly viscous solutions or strong hydrogels in pure water. 
The hydrophilicity–lipophilicity relationship of such polymers 
depends on the degree of substitution, i.e. the content of non-polar 
substituents attached to the original polar macromolecule [41]. 

Crosslinking reactions are often used to form polymeric 
networks demonstrating high gel strength. When polymerization 
proceeds in a three-dimensional manner, some period after it has 
progressed to a certain threshold, gelation occurs. This well-defined 
transition during polymerization is known as the gel point. At this 
point the reaction mixture changes from a viscous liquid to an 
elastic gel. The amphiphilic nature imparted upon polysaccharides 
after hydrophobic modification give them a wide and interesting 
applications spectrum, as rheology modifier, emulsion stabilizer, 
surface modifier and as drug delivery vehicles as well as in the field 
of edible coatings.

Pectin complexes

Pectins can gel in various ways depending on the type and 
structure of the pectin molecule. Gelling can be induced by acid, 
by cross-linking with calcium ion, through the oxidization of the 
feruloylester substituents on sugar beet pectin, or by synergistic 
reaction with alginate. Acid-inducing and calcium cross-linking 
pectin gels have been used most often for the development of 
pectin-based drug delivery systems [42]. Pectin with a low degree 
of methylation forms gels in the presence of calcium ions whereas 
pectin with a high degree of methylation forms gels in acidic media 
with the addition of different sugars, e.g., sucrose or glucose [43].

Calcium salts or multivalent cations can crosslink the 
galacturonic acids of pectin main polymer chains; as a result calcium 
pectinate is obtained by the formation of an ionic bond between 
the carboxylic acid groups of the pectin molecules and the calcium 
ions [44]. Cross-linking by calcium ions have been investigated as 
methods for reducing the inherent solubility. Calcium pectinate 
has been studied and has been indexed as a hydrophilic coating 
agent which is insoluble when prepared according to the interfacial 
complexation process. Calicium pectinate solution can be ued as 
edible coat to food. The coating material is applied using immersion 
coating process, the food cileces are first immersed in pectin 
solution; filtrated and then immersed in cold solution of calcium 
chloride dihydrate solved in water used as the external calcium 
cross-linker. Finally, they were dried.

It was addressed that the lower the degree of methylation of the 
pectin the more sensitive the pectin is to calcium as a gelling agent 
[45,46]. The geling properties of low-Methoxyl Pectinate received 
significant attention in the development of edible coatings having 
potential use in osmotic dehydration [47,48]. 

Chitosan–alginate complexes 

Chitosan–alginate complexes are oppositely charged 
polyelectrolytes. Alginate has the property of shrinking in low pH 
and getting dissolved in higher pH, whereas chitosan dissolves 
in low pH and is insoluble in higher pH ranges. In view of these 
concept of alginate–chitosan polyelectrolyte complexes gained 
acceptance, upon mixing, the carboxyl residues of alginate and 

the amino groups of chitosan ionically interacts to form the 
polyelectrolyte complex. The easy solubility of chitosan in low pH 
is prevented by the alginate network since alginate is insoluble in 
low pH conditions. The possible dissolution of alginate at higher pH 
is prevented by the chitosan which is stable at higher pH ranges. 
Multilayer films or coatings made by successive adsorption of 
the nanometric polyelectrolytes of (chitosan/ alginate) on a solid 
carrier showed to have enhanced mass transfer and mechanical 
properties that may find promising applications in biomedical and 
food fields [49,50].

Chitosan–pectin complexes 

Pectin can form an interpolymer complex with chitosan. 
Mixtures of pectin and chitosan have also been used as film. 
Polyelectrolyte complex film between pectin as an anionic 
polyelectrolyte and chitosan as a cationic species was prepared 
by blending two polymer solutions [46,51,52]. Chitosan is ionised 
(pKa=6.0) at pH 1.1 as, to some extent, is pectin (pKa≈3.0). Both 
materials are soluble at this pH and an interaction would be 
expected between the carboxyl groups of the pectin and the amino 
groups of the chitosan. In basic medium, the protection offered by 
the coat should be mainly due to the pectin as chitosan is insoluble 
at this pH. 

Combinations of pectin and chitosan form a polyelectrolyte 
complex at pH values in the range of 3–6. In addition to the 
formation of a polyelectrolyte complex, pectin and chitosan also 
interact by hydrogen bonding at low pH values (pH<2). At these pH 
values, pectin will be unionized and the importance of electrostatic 
interactions is suppressed, and an interaction between pectin 
and chitosan will probably take place via hydrogen bonding [53]. 
Chitosan-Arabic gum complex was used to prepare a biofungicide 
coating for banana [24].

Ethyl cellulose-pectin complexes

The major problem encountered with pectins, is their solubility 
and swelling properties in aqueous media. To overcome the 
problem of dissolution of pectin, many approaches have been 
evaluated, among these approaches, the combination of pectin 
with water insoluble polymers. The arised film coating materials 
from this combination showed promising results [24,54]. As a 
consequence the incorporation of appropriate amounts of pectins 
in the commercial insoluble ethyl cellulose aqueous dispersions 
could be an interesting alternative and could provide protection 
coatings [55].

Calcium alginate

The reactivity of sodium alginate with calcium and the 
subsequent gel formation capacity is a direct function of the average 
chain length of the G blocks. Hence, alginates containing the highest 
GG fractions possess the strongest ability to form gels. This initially 
arises from the ability of the divalent calcium cation, Ca2+, to fit into 
the guluronate structures like eggs in an eggbox. Consequently, this 
binds the alginate chains together by forming junction zones, and 
sequentially leading to gelling of the solution mixture and pellet 
formation. The application of these physicochemical characteristics 
in the formulation of conventional calcium–alginate encouraged to 
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design of formulated binary calcium–alginate–pectinate systems 
[56]. Moreover, calcium alginate films were found to reduce the 
growth of the natural flora and coliform inocula on beef, possibly 
due to the presence of calcium chloride. Calicium alginate coatings 
were found to enhance the microbiological safety and quality of 
poultry products during chilled storage [57], to meats and seafoods 
[58] and minimally processed fruits. Furthermore, alginate- calcium 
based edible coating containing Vitamin C and tea polyphenols 
were used for shelf-life extension of fish [23]. 

Cross-linked chitosan 

Cross-linked chitosan films as coatings for foods including fruits 
and vegetables can be created by immersion of the food into the 
acidic chitosan solution. After removing from the chitosan solutions 
the food are dipped into aqueous glutaraldehydesolution at pH 7 
in order to induce crosslinking of the chitosan layer to prevent its 
leakage easily from the surface [46]. A wide variety of chitosan 
based antimicrobial films have been well documented [59,60].

Polysaccharide-protein edible coatings

Biopolymers including proteins and polysaccharides have 
been the focal point of an expanding number of studies reporting 
their potential use in new materials, such as edible films. One 
example of proteins is the soy proteins which are used as functional 
ingredients in food manufacturing because of their role in human 
nutrition and health. Soy proteins are classified according to their 
sedimentation properties, into four groups, 2S (8%), 7S (35%), 
11S (52%), and 15S (5%). Soy protein is known to be heat-stable 
due to the extensive disulphide bonds between the subunits. This 
characteristic limits the use of soy proteins in many applications 
[61]. Native soy protein, because of its quaternary and compact 
tertiary structure has limited foaming and emulsifying properties. 
It consists of 18 different amino acid monomers. Some side chains 
can interact and/or react with organic or inorganic substances and 
cellulose fibers. These side chains can be chemically, physically or 
enzymatically modified to achieve desired properties. The protein 
molecules dissolve and unfold in solution. The unfolded molecules 
have an increase surface area, thus there is an increased contact 
surface area. These unfolded molecules become entangled with 
each other during curing, which enhances bonding strength. It was 
proved that the combination of polysaccharide and protein material 
showed a synergism resulting in a better mechanical properties 
[62].

Polysaccharides are used in admixture to proteins mainly to 
enhance stability of dispersed systems. Most high-molecular weight 
polysaccharides being hydrophilic do not have much of tendency to 
adsorb at the air–water interface, but they can strongly enhance the 
stability of protein foams by acting as thickening or gelling agents. 

On another hand, citric acid is an important agent for cross-
linking, it contains carboxyl groups that may interact with amino 
groups in soy protein [63]. Also, with sodium hypophosphite 
(NaH2PO2) as the catalyst, citric acid can interact with the cellulose in 
soy carbohydrates. A study on protein-polysaccharides interactions 
showed that blending the anionic quinoa protein with cationic 
chitosan resulted a monophase film with better mechanical and 

water-vapor permeability properties from those of pure chitosan. 
The prepared blend films proposed to be used as edible films for 
packaging purposes in the food industry [64], while chitosan-whey 
protein films carrying a high amount of whey protein at acidic pH 
were found to be biphasic [65]. Whey protein isolate- Pullulan 
combinations have been investigated throughout a research work. 
The edible films produced were low solubility and high transparency 
when compared with synthetic polymer films [66]. Another study 
showed that the structure and properties of soy protein isolate 
were improved by blending with carboxymethyl cellulose [67]. 
New edible coatings based on a mixture of galactomannan–collagen 
blends have been demonstrated as important tools to extend fruits 
shelf-life by decrease the fruits gas transfer rates [68]. 

Research into the manufacture of edible degradable films/
casings using a wide range of food ingredients and extrusion 
technology has been reported [69]. Films/casings with commercial 
potential were formed from pectin and gelatin/sodium alginate 
blends using extrusion technology. Sausages manufactured using 
casings containing 5% olive oil were found to be more prone to 
lipid oxidation than those using corn oil [70].

Lipid-Protien edible coatings

Although protein films have a relatively good oxygen barrier and 
mechanical properties at low and intermediate relative humidity 
due to their large number of polar groups and extensive polymer 
interchain, the edible films prepared from protein do not act as 
an efficient water vapor barrier due to the hydrophilic nature of 
proteins. In contrast, lipid films have low water vapor permeability 
owing to their hydrophobic nature but are very brittle because 
of their monomeric structure. Besides, lipids generally produce 
opaque films or coatings and are often sensitive to oxidation. These 
properties may influence the organoleptic attributes of food and 
lower its marketability. 

The above shortcomings can be solved by composite 
formulations of lipid- protein edible coatings. Various composite 
films with different formulations were produced had the potential 
to provide both the relatively high water vapor barrier of lipid 
films and the desirable mechanical properties of protein films. 
Novel edible composite films were prepared from pistachio 
globulin protein, saturated fatty acids, and an emulsifier using 
the emulsification technique. The resulted emulsified films had 
improved barrier properties and water solubility. However, the 
emulsified films were mechanically weaker and less transparent 
than the control film [71].

The hydrophilic nature of casein and caseinate based films 
limits their moisture barrier ability when compared to commonly 
use synthetic plastic films. The addition of calcium caseinate to 
sodium caseinate–oleic acid–beeswax films showed to improve the 
mechanical, barrier and optical properties of the films [72].

A mixture of whey protein isolated, glycerol and beeswax was 
formulated and applied on Chihuahua cheese. The coated cheese 
samples remain more stable after 10 storage days at 10 ºC under 
an air velocity of 3m/s. They had a lower moisture reduction and 
more constant color than the control cheese without coating [73]. 
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Film-forming emulsions were formulated by combining proteins 
with essential oils. Incorporation of essential oils in protein films 
gave rise to films with less surface roughness. The use of cinnamon 
or ginger essential oils at the low ratio used (less than 1:0.1 protein 
to lipid ratio) in sodium caseinate films showed to slightly reduced 
water vapour permeability, while their incorporation in the soy 
protein isolate films had slightly decreased the water vapour 
barrier efficiency of soy protein isolate films [74,75].

Conclusion
In this work, edible films and coatings, their sources and 

approaches for their development and utilization are highlighted 
for the purpose of reservation which was the subject takes more 
attention in the present review. The review focued on the advances 
on edible coating compositions and functionalities, besides the 
trends in the research about their different types, methods of 
formulations and incorporation of novel technologies to promote 
their applications for packaging and medical uses as carriers and 
supports for bioactive molecules. 
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