Hydrogen Peroxide and Cancer

Paul TE Cusack*
BScE, DULE, Saint John, Canada

Received: June 21, 2018; Published: June 25, 2018

*Corresponding author: Paul TE Cusack, BScE, Paul TE Cusack, BScE, DULE, 23 Park Ave. Saint John, NB, E2J 1R2, Canada

Introduction

I was asked to submit a minireview to this journal on oncology. I’ll share an antidotal observation that may prove useful to cancer researchers. I studied hyper-ferritism and Ferric Chloride to see its possible link to schizophrenia. Those results are well published [1,2]. However, I noticed from that research a trend that 12 patients who should have had high hydrogen peroxide (H2O2) also universally had had some form of cancer in their medical history. I wonder if H2O2 is not a carcinogen? Could the H2O2 break down that cell walls leading to cell mutation? I’m not an expert on cancer, nor do I intend to be, but perhaps this clue may lead to further research into the causes of cancer. I provide here some possible chemical reactions that could take place in a system in balance. The cell walls are fatty acids [3,4].

Lipids = Fatty Acids COOH
COOH + O2 + H2O + H+ →
(COOH)H2 + O2 + H+ →
(COOH)H2 + O2 + H+ →
CH2O + O2 + H2O →
CH4 + H2O →
CH4 + O3 + H2O →
C+C+H2O + H2O 
COOH + H2O + H2 →
(COOH)H2 + O2 + H2O →
C+C+H2O + H2O 
Carbon Ion + Hydrogen Peroxide + Water
Carboxylic Acid
R-COOH = CH3-COOH + H2 + H2O

CH3-COOH + H2 + H2O + O2 + Cl →
3CH2-COOH + 2H2 + 2H2O + 2O2 + 2Cl2 →
CH4 + Cl2 → Dichloromethane = Carcinogen

Animal studies have shown increases in liver and lung cancer and benign mammary gland tumors following the inhalation of methylene chloride (Figure 1).

Evidence for Carcinogenicity

Classification: B2; probable human carcinogen. Basis for Classification: Based on inadequate human data and sufficient evidence of carcinogenicity in animals; increased incidence of hepatocellular neoplasms and alveolar/bronchiolar neoplasms in male and female mice, and increased incidence of benign mammary tumors in both sexes of rats, salivary gland sarcomas in male rats and leukemia in female rats. This classification is supported by some positive genotoxicity data, although results in mammalian systems are generally negative. Human Carcinogenicity Data: Inadequate. Animal Carcinogenicity Data: Sufficient.
Conclusion

So we see that dichloride methane, a carcinogen, could be the culprit in allowing cancers (leukemia; Prostate; Breast; and lung cancers) to form. I reiterate; I’m not an expert in the field. I simply provide an observation that I hope is helpful to other researchers.

References


DOI: 10.32474/OAJOM.2018.02.000134