The immune suppressive mechanisms displayed by malignant cells are considered a central process in the pathogenesis of cancer. Research in this area has gained significant momentum over the past 20 years, with several immune checkpoints identified, including; CTLA-4, CD200/CD200R, Tim-3/Galectin-9 and PD-L1/PD-1 (Figure 1). Whilst characterising the molecular basis of leukaemia for risk stratification remains at the forefront of AML research; this must now extend to understating how these immune checkpoint pathways fit into the equation. A good example of why this is important is to consider CD200 expression level in AML, which is a negative prognostic indicator [1]. CD200 is an immunosuppressive ligand, that when engaged with its receptor CD200R, has the capacity to attenuate T-cell and NK-cell antitumour activity. Interestingly, most cases of CBF AML express high levels of CD200, yet CBF AML performs relatively well clinically. This paradox suggests there is a complex interplay between AML molecular heterogeneity and immune surveillance. Given the recent development and FDA approval of several immune checkpoint therapies, a full understanding of these processes and integration with standard molecular risk stratification is warranted.

The immune checkpoint story is becoming complex for AML, since several studies report that these immune surveillance pathways function in tandem. For example, the Galectin-9/Tim-3 immune checkpoint has been shown to cooperate with the PD-L1/PD-1 pathway, which is central in driving CD8+ T-cell exhaustion in AML. Thus targeting both Tim-3/Galectin-9 and PD-L1/PD-1 was required to achieve significant cytoreduction and improved survival in pre-clinical models [2]. Another study illustrated that the CD200/CD200R and PD-L1/PD-1 immune checkpoints are also linked in AML. In this instance, activation of CD200R was sufficient to drive the up regulation of PD-1 on memory CD8 T-cells. Further analysis relaved that targeting both CD200/CD200R and PD-L1/PD-1 immune checkpoints were required to significantly restore memory CD8 T-cell function [3].
a post-remission treatment in AML. The potential use of targeting the
immune checkpoint in post-remission is also recognised in
findings published from a recent phase-IB/II study involving the
PD-L1/PD-1 checkpoint inhibitor 'Nivolumab'. The report shows
that when used in combination with azacytidine for relapsed
AML, Nivolumab showed an improvement in prognosis and
increased numbers of effector CD8⁺ T-cells [4]. Given that the PD-
L1/PD-1 checkpoint functions in combination with other immune
checkpoints, the question now is to understand whether targeting
a combination of these pathways in AML performs well clinically.

To this end, results from a current phase-II trial (NCT02530463)
targeting PD-L1/PD-1 with Nivolumab in combination with the
CTLA-4 inhibitor 'Ipilimumab' in MDS are eagerly awaited. As are
the next generation of therapeutic mAb's such as 'Samalizumab'
(Alexion Pharmaceuticals), which is designed to target the CD200/
CD200R checkpoint. The potential for immune checkpoint therapy
in AML is clearly evident, however the interplay between these
pathways needs full appreciation and placed into context with
molecular stratification and standard therapy (Figure 1).

References


Coexpression of Tim-3 and PD-1 identifies a CD8⁺ T-cell exhaustion
phenotype in mice with disseminated acute myelogenous leukemia.
Blood 117: 4501-4510.

The immunosuppressive ligands PD-L1 and CD200 are linked in AML
T-cell immuno suppression: identification of a new immunotherapeutic

Phase IB/II Study of Nivolumab in Combination with Azacytidine (AZA)
in Patients (pts) with Relapsed Acute Myeloid Leukemia (AML). Blood
128: 763.