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Introduction
Much literature has been devoted to the estimation of variance 

components in random effects or mixed effects models. A variance 
component should always be nonnegative by its definition; 
however, we sometimes get it as negative [1,2]. illustrated this 
with the simple hypothetical data of a one-way classification 
having three observations in two classes and insisted that there 
was nothing intrinsic in the analysis of variance method to prevent 
it. When a negative estimate happens, it is not easy to handle this 
situation in interpretation and action. Hence, many papers have 
been contributed to strategies to deal with the negative values 
as estimates of variance components [3]. suggests that negative 
estimates of variance components can occur in certain designs such 
as split plot and randomized block designs by random- inaction. 
Thompson discusses the interpretation of the negative estimate 
and suggests an alternative method when the analysis of variance 
method yields negative estimates [4]. also suggest a procedure 
for eliminating negative estimates of variance components in 
random effects models. The analysis of the variance method is 
almost exclusively applied to balanced data for estimating variance 
components. However, there are multiple methods for unbalanced 
data. Therefore, it is necessary to identify the types of data before 
choosing a method. Though balanced data have the same numbers  

 
of observations in each cell, unbalanced data have unequal 
numbers of observations in the subclasses made by the levels 
of classification factors. Depending on the types of data, many 
methods can be applied to the estimation of variance components 
in a vector space. Representing data as vectors, the vector space of 
an observation vector can be partitioned in many ways, depending 
on the data structure. For balanced data, the vector space can 
always be partitioned into orthogonal vector subspaces according 
to the sources of variation, but it is not true for unbalanced data. 
This is the main difference between balanced and unbalanced 
data from the view point of a vector space. A random effect is a 
random variable representing the effect of a randomly chosen 
level from a population of levels that a random factor can assume, 
while a fixed effect is an unknown constant denoting the effect of a 
predetermined level of a factor. A linear model with these two types 
of effects is called a mixed effects model. The primary concern with 
the model in this paper is naturally in the nonnegative estimation 
of variance components of random effects. A negative estimate can 
happen in any method that contributes to the estimation. 

Hence, many papers have investigated strategies for 
interpretation and alternatives. Such strategies are seen in [5-9]. 
However, it is necessary to have a method that yields nonnegative 
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estimates despite all such efforts [10].suggested a method that uses 
reductions in sums of squares due to fitting both the full model and 
different sub-models of it for estimating variance components of 
random effects in mixed models. This method is called the fitting 
constants method or Henderson’s Method 3. Even though it has 
been used extensively for the estimation of variance components in 
mixed models, it still has some defects producing negative estimates 
in case [11]. synthesis is also used for calculating the coefficients of 
variance components in the method. Although this method is very 
useful, we should recognize whether quadratic forms for variance 
components are in the right form or not. Otherwise, expectations 
of the quadratic forms can be different from the real ones. This is 
going to be discussed in detail in projection model building. This 
paper suggests three methods to produce nonnegative estimates 
for variance components in mixed models. They are based on the 
concept of projection defined on a vector space. The definition 
of a projection and its related concepts are discussed in [12,13]. 
Quadratic forms in the observations can be obtained as squared 
distances of projections defined in proper vector subspaces. Each 
method requires that all vector subspaces for projections should 
be orthogonal to each other at the stage of fitting sub-models 
serially. When the orthogonality is satisfied with vector subspaces, 
it is possible to get nonnegative estimates. Hence, we also discuss 
how to construct orthogonal vector subspaces from a given mixed 
model. Quadratic forms as sums of squares due to random effects 
are then used to evaluate their expected values. Hereafter, equating 
quadratic forms to their expected values represents available 
equations for the estimates. For calculating the coefficients of 
variance components, Hartley’s synthesis is applied but in a 
different manner, which will be discussed.

Mixed Models
Mixed models are used to describe data from experimental 

situations where some factors are fixed, and others are random. 
When two types of factors are considered in experiments, one 
is interested in both parts, that is, the fixed-effects part and the 
random-effects part, in models. Let α be a vector of all the fixed 

effects except µ in a mixed model and let iδ  denote a set of 

random effects for random factor i for i = 1, 2, r. Then, iδ  could 
be interaction effects or nested-factor effects when they are simply 
regarded as effects from random factors. The matrix notation of the 
mixed model for an observation vector y is

 y j X XF F R Rµ α α= + + + ∈    

1

r

F F i i
i

j X Xµ α δ
=

= + + +∈∑               (1)

where j X F Fµ α+ is the fixed part of the model and X R Rδ + ∈

is the random part of the model. iδ s are assumed to be independent 

and identically distributed as 2(0, )N I
i

σδ , and ∊ is assumed to be 

distributed as 2N(0, )Iσ∈ . The mean and variance of y from (1) is

                         ( ) X F FE y j αµ= +

( ) 2

1
var( ) var T

i i i
i

y X X I
γ

δ σ∈
=

Σ = = +∑
         (2)

The expected value of the quadratic form Ty , Qy  is

( ) ( ) ( ) ( )T TE y Qy tr Q E y QE y= Σ +       (3)

Substituting the terms of (2) for (3) is

( ) ( ) ( ) ( ) ( )2 2
1

r TT TE y Qy tr QX X tr Q E j X QE j Xi i F F F Fi i
σ σ µ α µ αδ= + + + +∑ ∈=

. (4)

The expectation of any quadratic form in the observations of 
a vector y is represented as a function of variance components 
and fixed effects. The variance components of the full model can 
be estimated by the fitting constants method of using reductions 
in the sums of squares due to fitting the full model and the sub-
model of it. This method provides unbiased estimators of the 
variance components that do not depend on any fixed effects in the 
model, and it has been widely used for the estimation of variance 
components for unbalanced data. However, it still has an unsolved 
problem having negative solutions as estimates. As an alternative, a 
method which is based on the concepts of projections is suggested 
[14]. To discuss it, we consider the model (1) as representative. 
Since there are two parts in the model, we naturally divide the 
model into a fixed part and a random part. The random part of the 
model consists of random effects and errors:

                                  RX F Fy j αµ + ∈= +

=(j,X  )( , ) + T
F F Rµ α ∈     (5)

where 1
r Xi iR i δ∈ = ∑ +∈= The general mean µ  and fixed effects 

Fα  of (5) can be estimated from normal equations. Regarding y as 
an observation vector in the n-dimensional vector space, it can be 
decomposed into two component vectors orthogonal to each other. 
The decomposition of y is done by projecting y onto the vector 

subspace generated by ( , )j X F .

Projection method
Since a method based on the concept of projection is discussed, 

it will be called the projection method. For a mixed model such 
as (5), we can decompose y into two components by means of 

projections. Denoting ( , )j X F  and ( , )TFµ α by y
mX  and mµ , 

respectively, the projection of y onto the vector subspace spanned 

by mX  is mX  X ym
− , where Xm

−  denotes a Moore-Penrose 
generalized inverse of XM . Then, y can be decomposed into two 

vectors, that is, m X ymX − and ( )I X X yM M
−− which are orthogonal 

[15,16]. Instead of the fitting constants method, the projection 
method is attempted to estimate the nonnegative estimates of the 
variance components in a mixed model. To explain the method 
simply, suppose there are two factors A and B for a two-way cross-
classified unbalanced data where A is fixed with a levels and B is 
random with b levels. The model for this is
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 y j X X XF Fµ α α αβ β αβ αβ= + + + + ∈  

                         X M M Mα= + ∈ ,   (6)

where y is an observation vector in the n dimensional vector 

space, Fα  is a vector of fixed effects of A, δβ  and δαβ represent 
vectors of random effects of B and AB interaction respectively, and 

( , )X j XM F= , ( ), T
M Fα µ α=  and M X Xβ β αβ αβδ δ∈ = + +∈ . The 

second ∊expression of (6) represents the fixed-effects part and the 
random part. The random part SM  is obtained by the projection 
of y onto a vector subspace generated by the X M , which is 

( )I X X yM M
−− . So, y is represented as

 ( )y X X y I X X yM M M M
− −= + −

                                 y eM M= +       (7)

where y X X yM M M
−= satisfies the two conditions for being 

the projection of y onto a vector subspace spanned by the columns 

of X M  . The projection should be obtained by the orthogonal 
projection to the subspace and denoted as a linear combination 

of the column vectors of X X X yM M M
−⋅ of (7) satisfies the 

conditions. Since yM  is orthogonal to eM  , the random part 

( )Me I X X yM M
−= − is not affected by the fixed effects and has 

all the information about the variance components and random 
error variance. Since there are two random effects and random 
error terms in the model of (6), we can use eM  for finding the 

related variance components. The model for the estimation of 2σβ is

 ( )Me I X X yM M
−= −

 X Bδβ β= + ∈ ,          (8)

where ( )X I X X XB M M β
−= − and ( )( )I X X XM M δβ αβ αβ

−∈ = − + ∈ . The 

projection of eM onto the subspace spanned by X B  is B B MX X e− , 

which is ( ) ( ) MI X X X I X X XM M M M eβ β
−− −− −   

    . Then,

 ( )B B M B B MeMe I X XX X e−= −−+

B By e= + ,       (9)

where B B B My X X e−= is the projection of Me  onto the column 
space of B ByX ⋅  and Be  are orthogonal each other. Hence, Be  is not 
affected by the random effects Bδ Therefore, Be  is used for finding 

the subspace that has information about 2
αβσ . The model for this is

( )B B B XM ABI X X ee δαβ αβ= + ∈−−= ,         (10)

where ( )X I X X X XM M B BAB Xαβ
− −= − −  and ( )I X X X XM M B Bαβ

− −∈ = − − ∈

Hence, the projection of eB onto the subspace generated by X AB is 

By X XAB AB ABe−= . Then,

 ( )B AB AB B AB AB Be X X e I X X e− −= + −

ByAB e= + ,                                    (11)

where ABe  is ( ) BI X XAB AB e−− . Finally, we can use ABe for 
finding the coefficient matrix of the random error vector which 
generates the error space orthogonal to all the other spaces.

                  ( ) BI X XAB AB ABe e−= −

( )M M B B X XAB ABI X X X X− − −= − − − ∈     (12)

Thus, we can know that ABe  has all the information about 2σ∈  
of the random error vector ∈ . Denoting y as the sum of orthogonal 
projections and error part,

 B yAB ABy yMy e+ + +=

( )M M B B B BX X I X XM AB AB AB ABeX X y X X e e− − − −= + −+ +   (13)

Each term of (13) can be used to calculate the sums of 
squares that are quadratic forms in the observations. Since y is 
partitioned as four terms, there are four available sums of squares. 

We denote them MSS , BSS , ABSS  and ESS  where subscripts are 
corresponding factors. They are defined as

( ) ( )

( ) ( )

TSS y X X yM M M
TSS y I X X X X I X X yB M M B B M M

TSS y I X X X X X X I X X X X yM M B B M M B BAB AB AB
TSS y XE Ey

−=

− − −= − −

− − − − −= − − − −

=   (14)

where each SS term is given as the squared length 
of the projection of y onto its own vector subspace, and 

( )X I X X X X X XE M M B B AB AB
− − −= − − − . All the sums of squares 

are evaluated by using the eigenvalues and eigenvectors of the 
projection matrices associated with the quadratic forms in y. Since 
projections are defined on subspaces that are orthogonal to each 
other, we can identify the coefficient matrices spanning them.

Projection model
Since y is made up by the sum of mutual orthogonal projections 

such as (13), y can be represented by the orthogonal coefficient’s 
matrices of the effects of the assumed model (6). Temporarily, we 

denote y as y p for differentiating the model based on projections 
to the classical model (6). Then, the model for y p  is

M M B AB X Ey X X Xβ αβδα α + ∈= + +  (15)

where    yy p = . Since each coefficient matrix of the effects 
is derived from the corresponding orthogonal projection, the 
equation of (15) defines a projection model that is different from a 
classical two-way linear mixed model (6). It is useful for evaluating 
the coefficients of the variance components in the expectations of 
the quadratic form of an observation vector y p . In the model, all 
the coefficient matrices are orthogonal to
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each other. βδ , αβδ  and s are assumed to be 2
bN(0, I )βσ , 

2
abN(0, I )αβσ and 2N(0, I )nσ∈  respectively. The expectation and 

the covariance matrix of y p of the projection model (15) is

          ( )   p M ME y X α=

2 2 2       T T T
B B AB AB E EX X X X X Xβ αβ εσ σ σΣ = + +    (16)

Expectations of the SS terms except MSS  of (14) are

 
( ) ( ) ( ) ( )2 2,T T

B B B AB AB ABE SS tr X X E SS tr X Xβ αβσ σ= =
 

 2E(SS ) = tr(X )E Eσ∈                                                             (17)

Equating the three sums of squares, BSS , ABSS , and ESS of 
(14) to their correspond- ing expectations leads to linear equations 
in the variance components, the solutions to which are taken as the 
estimators of those components. Now, the equations are

 

( ) ( )
( )

2 2

2

ˆ ˆ, ,

ˆ .

T T
AB B B AB AB AB

E E

SS t X X SS t X X

SS t X
β αβ

β

σ γ σ γ

σ γ

= =

=                (18)

Solutions from the linear equations (18) are nonnegative 
estimates of the variance components. Since there are three 
different ways of getting sums of squares by means of projections, 
we will differentiate them with projection method I, II, and III. The 
procedure using the system of linear equations like (18) is called 
projection method I. The projection method II uses residual vectors 

after projecting y onto orthogonal subspaces. That is, Me  , Be , and 

ABe  are used such as. Then,

     ( )M M M pe I X X y−= −

( )( )M M M M B AB EI X X X X X Xβ αβα δ δ−= − + + + ∈     (19)

 Since Me  has three random components, T
M Me e  in the 

quadratic form of py  in which the coefficients matrices of the 
projection model are orthogonal is available for esti- mating their 

variance components. Denoting T
M Me e as MRSS  ,

 T
M M MRSS e e= ,                   (20)

where MRSS  measures the variation due to the three random 
effects, and thus, the quantity is used for the estimation of three 

variance components 
2
βσ  , 2

αβσ  , and 2σ∈ . Representing the residual 
random vector Be as py , has two random components as follows.

              ( )B B B Me I X X e−= −

 ( )( )M M B B AB EI X X X X X Xαβδ− −= − − + ∈   (21)

Hence, T
B Be e is used as an variation quantity for two random 

effects vectors. Denoting T
B Be e as BRSS ,

                      T
B B BRSS e e=

 ( )T
p M M B B py I X X X X y− −= − −               (22)

where BRSS is used for estimating the two variance 

components 
2
αβσ and 2σ∈  since Be  has just two random effects. 

Finally, expressing ABe  as py ,

 ( )AB AB AB B Ee I X X e X−= − = ∈              (23)

which has just one random component s. Therefore, T
AB ABe e

shows the variation due to the random error vector only, and 

this quantity is used for estimating the variance component 2σ∈ . 

Denoting 
T
AB ABe e as ABRSS ,

T
AB AB ABRSS e e=                   (24)

Hence, MRSS , BRSS , and ABRSS  are another set of sums 
of squares for estimating variance components instead of using 
sums of squares derived from the projections as an alternative 

method. MRSS , BRSS , and ABRSS  are also evaluated by using the 
eigenvalues and eigenvectors of the projection matrices associated 
with the quadratic forms in y. Now, the expected values of the RSS’s 
are

( ) ( )( )M M ME RSS tr I X X −= − Σ

 2 2 2
B AB EM M Mβ αβσ γ σ γ σ γ∈= + +

 ( ) ( )( )( )B B B M ME RSS tr I X X I X X− −= − − Σ

 2 2
AB EB Bαβσ γ σ γ∈= +

 ( ) ( )( )( )( )AB AB AB B B M ME RSS tr I X X I X X I X X− − −= − − − Σ

 2
EABσ γ∈=                                                                                        (25)

Then, the linear equations of variance components are obtained 
by equating the RSS’s to their expected values, the solutions for 
which always produce nonlinear estimates.

That is,

                              

2 2 2

2 2

2

ˆ ˆ ˆ

ˆ ˆ

ˆ

M B AB

B AB

AB

RSS M M M

RSS B B

RSS AB

β αβ

αβ β

σ γ σ γ σ γ

σ γ σ γ

σ γ

∈ Ε

Ε

∈ Ε

= + +

= +

=    (26)

Even though two systems of linear equations are not the 
same, either system will produce the same estimates of the 
variance components that are nonnegative. As another method, 
projection method III is also available for the estimation of 
variance components. This method is done as follows. For the 

model of (6), y Xθ= +∈, where ( ), , ,FX j X X Xβ αβ= and 

( ), , ,
T

F β αβθ µ α δ δ= . This method splits the vector space of an 
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observation vector into two subspaces, one for the projection part 
and the other for the error part at each step. Then, the projection of 

y onto the subspace spanned by XX −  is given by XX y− , and the 

error vector in the error vector space is ( )I XX y−− . Therefore, 

the coefficient matrix of s is derived as ( )I XX −− from it. The 

quadratic form ( )'y I XX y−−  denoted by 0BSS  is the sum of 
squares due to random error only, which has all the information 

about 2σ∈ . For information about both 
2
αβσ  and 2σ∈ , the vector 

space of the observation vector can be decomposed into two parts 
one for the projection part and the other for the error part. For this, 

the model to be fitted is 1 1 1y X θ= +∈ , where ( )1 , ,FX j X X β=
, ( )1 , ,F βθ µ α δ= and 1 Xαβ αβδ∈ = +∈ . Then, the projection 

of y onto the subspace spanned by 1 1X X − is given by 1 1X X y−
, 

and the error vector in the errror vector space is ( )1 1I X X y−−

. The quadratic form ( )1 1
Ty I X X y−− denoted by 1BSS  

has information about 2
αβσ  and 2σ∈ . Now, the error vector is 

represented by

             ( ) ( )( )1 1 1 1 1 1 1I X X y I X X X θ− −− = − +∈

 ( ) ( )1 1 1 1I X X X I X Xαβ αβδ− −= − + − ∈      (27)

Hence, the coefficient matrix of αβδ  is given by ( )1 1I X X Xαβ
−− . 

For information about three variance components 2σ∈ , 
2
αβσ  and 2

βσ
, the vector space can be divided into two subspaces considering the 

model matrix of the equation, 2 2 2y X θ= + ∈ , where ( ),2X j X F= ,

( ),2
T

Fθ µ α= and 2 X Xδ δβ β αβ αβ∈ = + + ∈ . Then, the projection 

of y onto the subspace spanned by 2 2X X −
is given by 2 2X X y− , 

and the error vector in the error vector space is ( )2 2I X X y−− . The 

quadratic form ( )2 2'y I X X y−−  denoted by 2BSS  has information 

about 2σ∈ ,
2σαβ and 

2σβ . Now, the error vector is represented by

 ( ) ( )( )2 2 2 2 2 2 2I X X y I X X X θ− −− = − + ∈

 ( )( )2 2I X X X Xδ δβ β αβ αβ
−= − + + ∈               (28)

Hence, the coefficient matrix of βδ is given by ( )2 2I X X Xβ
−−

. It is necessary to evaluate the expected values of the quadratic 
forms for constructing the equations for the variance components. 
They are

( )
( )
( )

2 2 2
2 2 2 2

2 2
1 2 2

2
0 2

E BSS c c c

E BSS c c

E BSS c

σ σ σβ β αβ αβ

σ σαβ αβ

σ

= + + ∈ ∈

= + ∈ ∈

= ∈ ∈                (29)

The nonnegative estimates of variance components are given 

as solutions of linear equations of 
2̂σβ  , 

2̂σαβ and 
2̂σ∈ . The above 

equations are summarized as follows:

2 2 2
2 2 2 2

2 2
2 2 2

2
0 2

ˆ ˆ ˆ ;

ˆ ˆ ;

ˆ ,

BSS c c c

BSS c c

BSS c

β β αβ αβ

αβ αβ

σ σ σ

σ σ

σ

∈ ∈

∈ ∈

∈ ∈

= + +

= +

=   
 (30)

where ijc ’s are coefficients of variance components of expected 
values of quadratic forms of (29).

Examples
As a first example of nonnegative estimates of random effects 

for a two-way mixed model, Montgomery (2013)’s data are 
illustrated. The data are from an experiment for a gauge capability 
study where parts are randomly selected, and three operators 
are fixed. An instrument or gauge is used to measure a critical 
dimension on a part. Twenty parts have been selected from 
the production process, and only three operators are assumed 
to use the gauge. The assumed model for the data in Table1 is 

( )y i j ijijk ijkµ α γ αγ= + + + + ∈ , where they ( )1, 2, 3iiα = are 

fixed effects such that 3 01 ii α =∑ = and ( )1, 2, ...., 20jjγ = , ( )ijαγ

, and ijk∈  are uncorrelated random variables having zero means 

and variances ( ) 2
arV jγ σγ= , ( )( ) 2

arV ijαγ σαγ= and ( ) 2
arV ijk σ∈ =

. Under the assumed unrestricted model, estimated variance 

components are 
2̂ 10.2798σγ = , 

2̂ 0.1399σαγ = − , and 2̂ 0.9917σ =∈ . 
Applying the projection method, I to the data, the linear equations 
of variance components are given as follows:

2ˆ1185.425 114

2ˆ27.05 76

2ˆ59.5 60

SS part

SS part operator

SSerror

σγ

σαγ

σ

= =

= =×

= = ∈              (31)

The solutions of the equations are 2ˆ 10.3985γσ =  , 
2ˆ 0.3559αγσ =  and 

2ˆ 0.9917σ∈ =  . All the variance components 
are estimated nonnegatively. When we apply projection method II 
to the same data, we get
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2 2 2ˆ ˆ ˆ114 76 60

2 2ˆ ˆ76 60

2ˆ60

RSS fixed

RSS part

RSS part operator

σ σ σγ αγ

σ σαγ

σ

= + + ∈

= + ∈

= ∈×          (32)

Table 1: Data for a measurement systems capability study from 
Montgomery.

Part Number 1 2 3

1 21, 20 20, 20 19, 21

2 24, 23 24, 24 23, 24

3 20, 21 19, 21 20, 22

4 27, 27 28, 26 27, 28

5 19, 18 19, 18 18, 21

6 23, 21 24, 21 23, 22

7 22, 21 22, 24 22, 20

8 19, 17 18, 20 19, 28

9 24, 23 25, 23 24, 24

10 25, 23 26, 25 24, 25

11 21, 20 20, 20 21, 20

12 18, 19 17, 19 18, 19

13 23, 25 25, 25 25, 25

14 24, 24 23, 25 24, 25

15 29, 30 30, 28 31, 30

16 26, 26 25, 26 25, 27

17 20, 20 19, 20 20, 20

18 19, 21 19, 19 21, 23

19 25, 26 25, 24 25, 25

20 19, 19 18, 17 19, 17

where 1271.975RSS fixed = , 86.55RSS part = , and 
59.5RSS part operator =× . The solutions for the equations are 

2ˆ 10.3985γσ =
 , 

2ˆ 0.3559αγσ =  and 
2ˆ 0.9917σ∈ =  which are the 

same as the previous solutions. Hence, either one of the projection 
methods can be used for the nonnegative estimation of variance 
components of random effects in a mixed model. Projection method 
III also gives the same result as projection methods I and II for 
the data. As a second example, Searle [2]’s hypothetical data are 
illustrated. Searle explains why a negative estimate can occur in the 
estimation of variance component of random effects in a random 
model. The data are shown in Table 1. Since class in Table 2 is a 
random factor, the one-way random effects model is assumed. The 

assumed model is yij i ijµ α= + + ∈ , where the ( )1, 2iiα = are 

random effects and ij∈  are uncorrelated random errors having 

zero means and variances ( ) 2
arV iα σα= and ( ) 2

arV ij σ∈ =

. As a result of the analysis of variance, the estimates of variance 

components are given as 2ˆ 15.33σα = − and 2ˆ 52σ =∈ . Searle 

demonstrated how negative estimates could come from the analysis 
of variance and insisted that there would be nothing intrinsic in the 
method to prevent it. However, the projection methods yield the 

same nonnegative estimates as 2ˆ 2σα = and 
2ˆ 52σ =∈ in any method.

Table 2: Hypothetical data of a one-way classification from 
Searle and Gruber [2].

Class Observations

1 19, 17, 15

2 25, 5, 15

Conclusion
Variance should be a nonnegative quantity as a measure 

of variation in data by its definition. In this work, it shows that 
orthogonal projections are very useful for defining a projection 
model for nonnegative variance estimation. Although there have 
been many attempts in literature to fix the problem of negative 
estimates for variance components over decades, those were not 
successful. However, the proposed methods in this paper always 
produce nonnegative estimates of variance components of the 
random effects in a mixed model. The two most important findings 
are checked and discussed for the estimation of nonnegative 
variance component. One is that a projection model should be 
derived from an assumed mixed-effects model. The other is that 
expectations of quadratic forms associated with the random 
effects should be evaluated from the projection model. This 
paper introduces terms such as projection method I, II, and III 
related to the methods, and the projection model for emphasizing 
projection rather than model fitting. Though they are based on 
the same assumed model, three methods are ap- plied differently 
in the application. Each method uses in its own way but summing 
up all orthogonal projections come to the observation vector. 
Depending on the types of projections, each method produces three 
different sets of equations for the evaluation of quadratic forms. 
Nonetheless, all of them show the same nonnegative estimates for 
variance components. It also shows that projection methods can be 
used for estimating variance components of the random effects in 
either random model or mixed model through examples. It should 
be noted that all the matrices associated with the quadratic forms 
come from the projection model not from the assumed model. In 
such a case, Hartley’s synthesis can yield correct coefficients of 
variance components.
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