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Introduction
Acetylcholine (ACh) is a neurotransmitter broadly distributed 

in the central and peripheral, autonomic nervous system (CNS). In 
the CNS, ACh performs several functions, such as memory, learning, 
motor control and attention. Acetylcholinesterase (AChE), one 
of the most essential enzymes in the family of serine hydrolases, 
catalyzes the hydrolysis of neurotransmitter acetylcholine, which 
plays an important role in memory and cognition [1-4]. It has been 
suggested that acetylcholinesterase (AChE) degrades the esters of 
choline and has a role in neurotransmission within the autonomic 
and somatic motor nervous systems and it is the target of action 
of the drugs (inhibitors) such as physostigmine, neostigmine, 
pyridostigmine and rivastigmine, physostigmine [1-4]. It is well 
known that AChE enzyme regulated the release and entrance of  
ACh in cholinergic fibers [5]. The function of AChE in neurological 
disorders like Myasthenia gravis (MG) [6], Alzheimer’s disease [7],  

 
Parkinson’s disease [8] and other ‘non-classical’ activities such as, 
neurite formation, network formation and cell adhesion [9] draw 
attention of many researches related to the medical field. The exact 
mechanisms of the interaction of physostigmine, neostigmine, 
pyridostigmine and rivastigmine with the acetylcholinesterase 
receptor complex still need further molecular modeling studies.

 Acetylcholinesterase has extremely high catalytic activity 
and each molecule of AChE hydrolyze about twenty-five thousand 
molecules of acetylcholine (ACh) per second. The active site of 
AChE contains two subsites which are the anionic site and the 
esteratic subsite [10,11]. The mechanism of action and structure 
of AChE have been obtained from the crystal structure of the 
enzyme which were studies by different research groups [12-
14]. The anionic subsite housing the positive quaternary amine 
of the acetylcholine in addition to other cationic inhibitors and 
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substrates. The substrates which have cationic charge do not 
bound by the negatively charged amino acid in the anionic site, but 
the binging is performed through interaction of fourteen aromatic 
residues that available close to the active site [15-17]. The active 
site of AChE is located four angstroms from the substructure of 
the molecule [17]. The acetylcholine is hydrolyzed in the esteratic 
subsite and produces acetate and choline. The active site contains 
mainly a catalytic triad of three amino acids which are: serine 203, 
histidine 447 and glutamate 337 [18]. The hydrolysis reaction by 
AChE on carboxyl ester produces acyl-enzyme and free choline. 
Subsequently, the acyl-enzyme undertakes nucleophilic attack 
by a water molecule, supported by the histidine 447 moiety and 
the releasing acetic acid and regenerating the free enzyme again 
[18]. The main aims of the paper are: virtual screening approach, 
pharmacophore modeling, molecular docking, and consensus 
binding affinities of acetylcholine and four well know inhibitors. 
The obtained results will be used as a guide to identify and design 
novel AChE inhibitors with higher selectivity. 

Materials and Methods
Molecular docking

The starting geometry of physostigmine, neostigmine, 
pyridostigmine and rivastigmine was constructed using chem3D 
Ultra (version 8.0, Cambridgesoft Com., USA). The optimized 
geometry of the four inhibitors with the lowest energy was 
used in the molecular docking. The crystal structures of human 
acetylcholinesterase in a complex with a transition-state analogue 
were downloaded from the Protein Data Bank (https://www.
rcsb.org/structure/5hfa). The molecular dockings of the four 
inhibitors with human acetylcholinesterase was accomplished 
by AutoDock 4.2 software from the Scripps Research Institute 
(TSRI) (http://autodock.scripps.edu/). Firstly, the polar hydrogen 
atoms were added into human acetylcholinesterase and the four 
inhibitors molecules. Then, the partial atomic charges of the 
human acetylcholinesterase and the four inhibitors molecule 
were calculated using Kollman methods [19]. In the process of 
molecular docking, the grid maps of dimensions (62Å X 62Å X 
62Å) with a grid-point spacing of 0.376Å and the grid boxes is 
centered. The number of genetic algorithms runs, and the number 
of evaluations was set to 100. All other parameters were default 
settings. Cluster analysis was performed on the results of docking 
by using a root mean square (RMS) tolerance of 2.0Å, and this 
was dependent on the binding free energy. Lastly, the dominating 
configuration of the binding complex of the four inhibitors and 
human acetylcholinesterase with minimum energy of binding can 
be determined.

Results and Discussion
Molecular Docking Analysis

The modeling study was performed in this paper showed great 
interactions between physostigmine, neostigmine, pyridostigmine 
and rivastigmine and human acetylcholinesterase. The binding 

energies of the four inhibitors and human acetylcholinesterase 
were shown in Table1. The geometry of docking obtained with 
acetylcholine and pyridostigmine with human acetylcholinesterase 
as shown in (Figure 1A & B), respectively. The four inhibitors were 
able to form hydrogen bonds (HBs) with the amino acid residues 
of the enzyme, pi-pi stacking and Pi-alkyl interaction (Table 1). 
In addition, the molecular docking results showed that other 
amino acids residues are involved in the interactions with the 
four inhibitors. The binding energies scores as shown in Table 1 
were calculated by adding up a set of weighted empirical energies 
including van der Waals forces (VDW), electrostatic, hydrogen-
bonding, desolvation, entropy, and hydrophobicity. A good number 
of pi‒pi interactions were observed (Table 1) that show the 
bond distance varying between 3.40 Å to as far as 3.95 Å which 
is consistent with the results obtained by Avasthi et al. whom 
indicated that the ideal bond distance in pi‒pi interactions are 
within the range 3.30–4.00 Å [20]. In addition, in order to provide 
another clear reason of the activity difference in terms of dynamic 
behavior, distances Pi-sigma monitor interactions between Ser203 
and ligands were determined and compared during the simulation 
time (Table 1). The distances obtained were similar to the literature 
where the distance of Pi-sigma interaction less than 0.5nm [21]. 
This indicated that the π-sigma interaction could also be one of 
the key interactions to elucidate the activity dissimilarity in terms 
of dynamic behavior. The docking results obtained in Table 1 with 
the acetylcholine and the various inhibitors provided insights into 
the essential structural elements and motifs central of the catalytic 
mechanism of the acetylcholinesterase. It has been reported that 
the X-ray analysis of the structural features of AChE has a narrow, 
long, hydrophobic gorge which is about 20 Å deep [11,12]. The 
AChE has a catalytic triad consisting of His447, Ser203, and 
Glu334 [22] situated in the active site of the narrow deep gorge, 
the lining of which contains mostly aromatic residues that form 
a narrow access to the catalytic Ser203 [22]. In addition to that 
a peripheral anionic site containing an additional set of aromatic 
residues Trp286, Tyr124, Tyr72, Tyr341, and Asp74 [22] was 
reported which is located at the border of the gorge and affords a 
binding site for allosteric inhibitors and modulators. The binding 
between the acetylcholine and the four inhibitors with the enzyme 
is characterized by cation-π interactions between the protonated 
nitrogen’s and the preserved aromatic residues, phenylalanine 
and tryptophan. Furthermore, π-π stacking between the aromatic 
moieties of the inhibitors and the aromatic amino acids as shown 
in Table 1 has critical roles in binding and this consistent with the 
literature as described by Shin Hua et al [18]. With the current 
obtained data, computational methods have become essential 
to biological investigations. Here we have used computational 
approach to further understand the mechanism of interactions 
and binding affinity between AChE with drug molecules. The 
present analysis permits us to draw the number of conclusions. The 
computational methods on the catalytic site help the researcher to 
design new drug molecules. The molecular docking programs are 
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helpful in understanding the interaction between the AChE with 
diverse lead/drug molecules. Our analysis also demonstrates that 
the four inhibitors could be the prospective lead molecule for the 
inhibition of AChE. Hence docking results of acetylcholine and 
the four inhibitors could be used as the template for designing 

therapeutic lead molecule. We hope that the originality and success 
of the computational efforts in this paper offer fruitful promise for 
the future predictions of finding new inhibitors which could results 
into enormous reductions in therapeutics development time.

Table 1: Binding and intermolecular energies from molecular docking for compounds acetylcholine, physostigmine, neostigmine, 
pyridostigmine and rivastigmine.

Molecule nasme Chemical 
structure

Hydrogen bond 
donor and 

acceptor atoms

Hydrogen Bond 
length(A0)

Binding energy 
Kcal/mole

Pi-pi monitor 
interactions

Pi-sigma monitor 
interactions

Acetylcholine
 

O
N+

O

A:GLY121:N - 
target_ACH_0:O4

A:GLY122:N - 
target_ACH_0:O4

A:SER203:OG - 
target_ACH_0:O2

A:SER203:OG - 
target_ACH_0:O4

2.85081

2.62463

2.83287

2.62463

-4.88 8 4

Physostigmine

  
O

N
H

O

N

N A:SER203:OG - 
target_phy_8:O18 2.81923 -6.25 7 4

Neostigmine
N O N

O

A:TYR337:OH - 
target_neos_5:O12 3.08406 -6.52 8 4

Pyridostigmine N
O

O

N

A:GLY121:N - 
target_pyri_2:O10

A:GLY122:N - 
target_pyri_2:O10

A:SER203:OG - 
target_pyri_2:O10

2.7582

2.76565

2.59098

-5.8 6 4

Rivastigmine
N

ONH3C

CH3

CH3

CH3

O

H3C

H A:GLY122:N - 
target_Riva_0:O11 3.17189 -6.66 7 4

      

Figure 1: Three-dimensional representation of acetylcholine (A) and pyridostigmine (B) interacting with active site of target 
macromolecule human acetylcholinesterase.
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Conclusion
The results obtained in this paper showed that a substrate and 

four inhibitors can be used to generate a good pharmacophore 
model, which in turn can be used to productively forecast the 
activity of a large number of novel substrates and inhibitors.
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