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Abstract
Context: The study of ancient biomolecules represents a useful tool to address questions related to human history. 
Objective: This manuscript provides an overview of the major categories of ancient biomolecules, highlighting their 

potentialities when applied to research.
Methods: This study gathered knowledge from recently published papers on paleogenomics, paleoproteomics, ancient lipids 

and stable isotope analyses with the aim of providing a technical and historical background on ancient biomolecules, and examples 
of their application in the Arabian Peninsula and Middle East in general.

Results: The progress seen in the past decade with regard to the study of ancient biomolecules has led to a dramatic expansion 
of the studies that apply those analyses. Increasing attention has also been paid to the development and optimization of protocols 
aimed at reducing and/or preventing the risk of contamination. While extensively applied to Western areas, the study of ancient 
biomolecules in the Middle East and the Arabian Peninsula has been limited.

Conclusions: Research on ancient biomolecules represents the most valuable source of information to understand our 
evolutionary past at an inconceivable level of detail, especially when applied to areas so far underrepresented in this field, such as 
the Middle East and the Arabian Peninsula in particular.
Keywords (3-5): Paleobiology; ancient DNA; Gulf; stable isotopes; strontium 

Introduction
The Nobel Prize in Medicine and Physiology last year (2022) 

has been awarded to Svante Pääbo, one of the pioneers in paleo  
genomics research, whose studies underlined the importance 
of our evolutionary history not only for our present but also 
for our future [1]. The scientific community has recently seen 
a rapid expansion of ancient biomolecular studies, which have 
allowed previously unsolved questions on our human history  

 

to be addressed [2,3]. Cappellini et al. have provided a review of 
the most recent applications of the ancient biomolecules [2]. By 
applying ancient biomolecular analyses, bioarchaeologists were 
able to shed light on the pathways and evolutionary processes that 
contributed to the current biodiversity [2]. The field of ancient 
biomolecules covers a broad spectrum of techniques, including the 
examination of ancient nucleotide and amino acid sequences, as well 
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as the analysis of lipids and stable isotopes [2,3]. The development 
and application of ancient biomolecular analyses has the potential 
to help bioarchaeology studies to be carried out in geographical 
areas potentially challenging, due to suboptimal environmental 
conditions, including heat and humidity [4]. The advent of next-
generation sequencing (NGS) technologies has revolutionized 
the field of ancient DNA (aDNA), allowing an increased number 
of ancient genomes to be analyzed and the possibility to study 
extremely ancient remains [2,5-8]. As reviewed in early studies, 
the last decades also recorded a growing interest in environmental 
DNA (eDNA) [2,8-10]. Environmental DNA (eDNA) pertains to the 
genetic material gathered from environmental samples, which 
may include soil, seawater, or even samples taken directly from 
organisms [11]. The field of eDNA has also benefited from the 
introduction of NGS technologies as well as from the subsequent 
application of paleometagenomics [2,12,13]. Along with the 
advancement of sequencing technologies, increasing efforts have 
been focused on the development of protocols aimed at maximizing 
the retrieval of aDNA as well as reducing and/or preventing the risk 
of contamination [5,14-17]. 

Long bones and teeth dentine have historically been recognized 
as the most employed substrates for aDNA studies; however, in the 
last years, researchers have pointed out other skeletal elements 
such as petrous bones and tooth cementum as samples richer in 
aDNA [5,14,15,18]. Moreover, advancements in the paleogenomics 
field have facilitated the retrieval of a vast amount of genetic data 
from various substrates that were previously unexplored, such 
as archaeological materials, dental calculus, archaeobotanical 
remains, and more [18]. In addition to the advances in aDNA studies, 
investigations on ancient proteins recently underwent a significant 
expansion [2,19]. Paleoproteomics is the discipline that aims at 
identifying and characterizing the proteins of ancient remains 
[20]. Unfortunately, the field of paleoproteomics has advanced 
at a slower pace as compared to the field of aDNA [20]. Although 
the survival of ancient proteins has been investigated since the 
1950s [21], it is only since the 2000s that technical advancements 
in mass spectrometry enhanced the possibility of recovering and 
characterizing ancient proteins [20]. The paleoproteomics field has 
not been spared from technical challenges. In fact, efforts aimed 
at directly sequencing ancient proteins have failed because of the 
need to start from highly purified, unmodified, and concentrated 
proteins [22,23]. Despite the challenges, there is a growing number 
of paleoproteomics studies being conducted, which significantly 
enhances the field’s potential to deepen our understanding of 
species evolution and human culture [24].

Another class of biomolecules is represented by ancient lipids. 
As recently reviewed by Cappellini and colleagues [2], ancient 
lipids were firstly analyzed in the 1960s, but their application in 
archaeology was registered only in the following decade [2,25,26]. 
These molecules have the potential to elucidate past human 
activities [27,28]. Ancient lipids can be recovered from a broad range 
of materials as demonstrated by wide research [27-31]. Moreover, 
unlike aDNA and proteins, lipid biomarkers can be retrieved in 
high concentrations as proved by the analyses of potteries and bog 

butters [28,32,33]. Similar to ancient lipids, the examination of 
stable isotopes has seen significant growth in recent decades and 
has become one of the most prevalent methods in bioarchaeological 
research. This approach enables the investigation of past human 
diet and residential mobility [34-37]. In the present day, stable 
isotope analysis finds application in a wide range of areas, including 
plant and livestock management, examination of past population 
mobility, understanding social dynamics, exploring development 
trends, and studying the variation of subsistence strategies [37-55].

The Middle East lies at the crossroads of the Old World, where 
Africa, Europe and Asia meet. Due to this geographical location, 
the Middle East has played a central role in human evolution. At 
the same time, the often-inhospitable nature of the climate in this 
region has contributed to geographic structuring both within the 
region and between the Middle East and other parts of the World 
[56]. Nevertheless, it is thought that despite the Middle East 
being characterized by an arid desertic environment, there have 
been humid periods in the past that resulted in what has been 
called “Green Arabia” and which might have facilitated human 
dispersals [57]. The Middle East contains some of the earliest 
evidence of modern humans outside of Africa, with fossils dating 
back approximately 180,000 years ago from the Levant and around 
85,000 years ago from North West Arabia. [58, 59]. However, 
our understanding of the prehistoric societies and population 
movements of Middle Easterners remains limited. [56]. In this 
article we describe the different classes of ancient biomolecules, 
highlighting their potentialities and shortcomings and providing 
examples of their application in the Middle East and the Arabian 
Peninsula.

Stable Isotope Analysis: Investigating Human Diet and 
Mobility

Stable isotope signatures represent a widely employed method 
for investigating dietary habits and migrations of past human 
populations [37,60]. This well-known method has been frequently 
utilized in reconstructing the dietary habits of human populations 
from Prehistory to the present day (e.g. [41-43,49,50,55,61-69]) 
also represents a useful tool to explore broader issues such as 
the domestication of plant and animal species, the patterns of the 
Neolithization process etc. [37,70-73]. Moreover, stable isotopes 
provide evidence of population mobility allowing inferences on the 
structure, dynamics, and economy of human groups [37,74-76]. 
Situated in a strategically central location, the Arabian Peninsula has 
facilitated the movement of its inhabitants and traders, leading to 
the exchange and spread of animal and plant species across Africa, 
Europe, and Asia. However, due to its arid and often inhospitable 
climate, the Arabian Peninsula (and the Middle East in general) has 
received limited attention in stable isotope analysis studies aimed 
at understanding the Arabian paleoenvironment [77]. We report 
some examples below. 

Carbon and nitrogen stable isotopes: dietary pattern 
reconstruction

Diet represents the convergence of social and cultural values 
that display a strong influence on human habits [78, 79]. The 
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analysis of carbon and nitrogen stable isotopes has received a 
growing interest from the scientific community as it provides a 
powerful tool to reconstruct dietary patterns in past populations 
by providing dietary data at the individual level [80]. The isotopic 
composition of bone proteins reflects that of the protein component 
of food consumed in the last 10-15 years prior to death [81,82]. 
Because stable isotope analysis refers to single individuals, the 
obtained data can be useful for evaluating variation and social 
dynamics within the analyzed samples [83]. As widely discussed 
in the literature, the isotopic values are reported as the ratio of 
heavy/light (C13/C12; N15/N14) isotope expressed in delta (δ) per 
mil (‰) relative to internationally defined standards [84], the Pee 
Dee Belemnite, PDB [85] limestone fossil, then substituted by the 
Vienna Pee Dee Belemnite, V-PDB [86] and atmospheric nitrogen, 
AIR [87]. Photosynthesis is the main natural process responsible 
for carbon isotopic fractionation during which the preferential 
exchange of the lighter carbon isotope (12C) is responsible for the 
depletion of ~ -7‰ in δ13C from CO2 to plants [88, 89].

Terrestrial plants follow three main photosynthetic pathways. 
The crassulacean acid metabolism (CAM) will not be discussed here 
since these plants are not relevant to human diets. Plants known 
as C3 plants (such as trees, shrubs, tubers, wheat, rice, flowering 
plants, and grasses from temperate regions) follow the Calvin-
Benson photosynthetic pathway, which results in the synthesis of 
a three-carbon compound; they discriminate against the heavier 
isotope of carbon, and thus their tissues are enriched in 12C showing 
a mean δ13C value of -26.5‰ [90, 91]. Maize and other plants from 
hot and arid environments (e.g., savannah grasses, amaranths, 
sedges, millet, sugarcane, sorghum, etc.) synthesizing a four-carbon 
compound are generally classified as C4 plants; They have higher 
carbon ratios, resulting in more positive δ13C values (mean δ13C 
value of -12.5‰) [92-95]. Temperature, variation in atmospheric 
CO2, nutrients, water availability and the amount of light can affect 
the isotopic ratios of C3 plants whereas C4 species generally exhibit 
less variability [96,97]. The fractionation process continues in 
consumers implying an enrichment factor of approx. +5‰ into 
their bone proteins [98] plus a further enrichment of ca. 1‰ for 
each trophic level [99].

A similar small increase in 13C has also been attested in the 
marine environment by previous research [98,100-103]; in fact, 
marine organisms possess higher δ13C values for the main source of 
carbon in the environment is represented by dissolved bicarbonates 
(δ13C value of about 0‰) [104]. The consumption of marine 
food webs, on the other hand, can complicate the assessment of 
C4 plant consumption [98] leading to an overlap of the carbon 
isotopic  signatures of marine and terrestrial environments [61,90]. 
Another aquatic resource which is worth considering is freshwater 
(lacustrine and riverine) fish which was consumed by past human 
populations as attested by different isotopic archaeological studies 
[105-112]. Though aquatic, freshwater fish has δ13C values more 
similar to terrestrial animals, although extremely variable because 
carbon can come from organic and inorganic carbon sources [113].

Nitrogen is present in the Earth’s atmosphere (approx. 
78%) however, numerous biochemical processes (e.g., fixation, 
ammonification, nitrification, denitrification, assimilation) are 
necessary to convert it from gas (N2) to the most usable forms 
and vice versa, clearly influencing its fractionation [114]. Plants 
from the terrestrial environment may alternatively use nitrogen 
as ammonium (NH4+) thanks to the symbiosis with Rhizobium 
bacteria (e.g. pulses) or in the form of ammonia (NH3) or nitrate 
(NO3) [115]. As a consequence of the use of different forms of 
nitrogen these plants also differ in terms of δ15N values which 
result very low in the former group (ca. 1‰) and higher in the 
latter one (ca. 9‰) [115]. Although nitrogen ratios can vary due to 
the use of different nitrogen sources, various environmental factors 
(such as humidity, pH, salt concentration, etc.) can influence the 
isotopic values [115]. Through successively higher trophic levels, 
an enrichment of 3-5‰ in δ15N values is observed [116].

The source of nitrogen also determines a variation in δ15N 
ratios between marine and terrestrial ecosystems as the use of 
15N enriched sources (e.g. nitrates from water) is responsible for 
the increase in nitrogen values in marine organisms with respect 
to the terrestrial ones [89,109]. A different situation may be 
observed for freshwater environments as in this case they show 
a higher variability due to the use of both terrestrial and aquatic 
materials [115]. Moreover, the δ15N value also varies according 
to biological and cultural factors as breastfeeding practices [117-
122], nutritional stress or metabolic disease [43,49,50,123-125]. 
The stable isotope values (δ13C and δ15N) of plants and animals 
consumed by humans could be useful for investigating dietary 
patterns, environments and the food groups consumed [126-129] 
although with some limitations [130,131]. Clearly, these data 
should refer to the specific environment in which past human 
population lived therefore it is extremely important to reconstruct 
the reference baseline by analyzing coeval faunal and plant remains 
if available [132-141].

Despite the potentialities of isotopic analysis from bone proteins, 
it may be possible that exposure to arid environments prevents 
proteins’ extraction [54]. In this case, radiocarbon dating and stable 
isotope analysis on hydroxyapatite represent a valid substitute in 
the reconstruction of dietary patterns. The former relies on the 
absence of equilibrium between the marine environment and 
atmosphere where 14C is produced, leading to the development of 
the marine effect reservoir (MRE) due to the differential age of the 
carbon in these two environments being the marine ca. 400 years 
older than that in the atmosphere [54]. Marine resources intake 
increases the individual’s 14C age with respect to the biological one. 
The difference in the estimates of the time of burial and MRE are 
thus useful for investigating the amount of marine sources’ intake 
[54]. Alternatively, the isotopic δ13C ratio of hydroxyapatite is useful 
to discriminate between subsistence strategies mainly based on C3 
(average δ13C values -12‰) or C4 (average δ13C values -1‰) plants 
[142-144]. Moreover, unlike bone proteins, hydroxyapatite reflects 
the total diet and not only the protein components [143,145-148].
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At present, there is a scarcity of studies on diet reconstruction in 
the Arabian Peninsula. However, Roberts and colleagues addressed 
this gap by utilizing 21 mammal tooth enamel samples and applying 
stable carbon and oxygen isotope analysis to investigate the middle 
Pleistocene paleoenvironment of Ti’s al Ghadah in Saudi Arabia 
[77]. The δ13C signatures from the fossil mammals associated with 
hominin presence showed a prevalence of C4 vegetation in the diets 
of herbivores. Additionally, the consistent C4 consumption by all 
animals was indicative of the high consumption of C4 grasslands. 
Even the δ18O signature suggested that in the past the region 
probably experienced higher humidity [77]. The data produced in 
this study represents a clear example of how stable isotope analysis 
from fauna helps gain insights into paleoaridity and paleovegetation 
during periods of hominin migration [77]. Recently, another study 
employed stable carbon and nitrogen isotope analysis to examine 
the dietary patterns of adult human and animal bones excavated 
from Qalat al-Bahrayn [149]. Interestingly, they found that the diets 
consumed were dominantly terrestrial although samples were 
retrieved in proximity to the coast [149]. The diets consumed were 
heterogeneous, spanning from terrestrial diets to more mixed diets, 
which included C4 resources [149]. The same heterogeneity was 
found in the sheep, suggesting diversity also in feeding practices 
that might have included the use of dried fish [149]. The study is 
particularly relevant since it highlights diversity in the economic 
and ecological systems that one would not expect from a small 
island [149].

Stable isotopes of strontium and oxygen for the study of 
residential mobility

The mobility and migrations of past human groups represent 
an important topic for both the archaeological and forensic fields. 
Phenomena such as changes in economic patterns, social complexity, 
landscape, post-marital residence, population origins, mortuary 
practices, and economic activities are all considered motivating 
factors for movement. For this reason, population movement 
influences events such as subsistence, health, demography, socio-
political organization, and economy. Even in this case, the human 
remains serve as a valuable source of information for investigating 
an individual’s history by analyzing stable isotopes [150]. As widely 
reported in the literature, isotopes in bone and tooth remains 
reflect the chemical composition of the consumed foods and drinks 
which in turn are dependent on the local environment [151,152]. 
As a result, isotope ratios like 87Sr/86Sr (δ87Sr) and 18O/16O (δ18O) 
are extensively utilized to explore the origins and mobility patterns 
of ancient populations [150].

The fundamental principles behind employing combined 
strontium and oxygen isotope analysis of human tissues are rooted 
in their connection with the geological composition of the soils 
where food was cultivated and the origin of the drinking water. 
Strontium is naturally present in various isotopic variants (e.g. 88Sr, 
87Sr, 86Sr, 84Sr etc.) [153, 154]; nonetheless, the only isotope suitable 
for comparing modern and archaeological data is 87Sr, as it possesses 
both stable and radiogenic characteristics, being the decay product 
of the long-lived natural beta-emitting isotope 87Rb, which has a 

half-life of 48.4 billion years [154-156]. The unique geology of each 
region is reflected by the strontium abundance in the weathered 
rocks from which it can pass into the local ecosystems through its 
release into groundwater to the food chain maintaining the same 
87Sr/86Sr ratio without appreciable fractionation [157-159]. As 
the amount of strontium varies among different areas, its uptake 
into the skeletal tissue reflects the geologic features and the bio-
availability of the chemical element, providing evidence of the area 
of residence and mobility [160-162] as well as the presence of 
non-local individuals because it can be incorporated into enamel 
hydroxyapatite due to its similarity to calcium [161,163]. The Sr 
isotopic ratio of dental enamel provides the signal of the place of 
birth because it represents the individual’s Sr intake throughout 
the crown formation and results in a static tissue extremely 
resistant to diagenetic alteration in the post-burial environment. 
Also, the teeth formed post-weaning accurately reflect the food 
and water consumed by individuals, therefore, it can be considered 
a birthplace signal. [161,163]. Oxygen’s signatures depend on 
multiple pathways. However, although the overall oxygen signature 
is determined by different factors, the isotopic ratios in tooth enamel 
and skeletal remains are a proxy of the drinking water consumed 
[164-166] and its variations are ascribable to geographic and 
climatic factors [167-171]. The fractionation processes of oxygen 
isotopes are known and therefore the isotopic analysis allows the 
reconstruction of the consumed water sources (δ18Ow) and thus 
past human mobility [166-169,172-174].

As enamel formation takes place during childhood without any 
further remodeling, the strontium and oxygen signatures it contains 
mirror those of the environment in which individuals lived during 
their infancy [45]. Specifically, the development of the crowns 
of the permanent first molars initiates in the womb and reaches 
completion between the ages of 2.5 to 3.0 years. The formation of 
the second molars, otherwise, starts at 2.5-3.0 years to be completed 
in 7.0-8.0 years old children [175, 176]. Consequently, individuals 
drinking water from local sources will possess isotopic values in 
line with those of the environment, conversely the use of non-local 
water sources will cause an inconsistency between environmental 
and individual isotopic signatures. Despite the potentials of these 
isotopic analyses, the interpretation of data could be problematic. 
For instance, with regard to strontium, local environments 
generally display different inputs that do not necessarily reflect 
the δ87Sr ratio of the geological substrate [161]. Therefore, it is 
important to distinguish strontium values from rocks and the bio-
available one [62]. The local baseline could be assessed by several 
methods such as analyzing environmental samples including soil, 
freshwater, and coeval remains and/or modern ones; in this case 
however attention should be paid to the potential effect of human 
activities (e.g. fertilizers) on isotopic ratios [161,177-179]. 

A possible solution for data interpretation relies on the use of 
ancient faunal isotopic values as the baseline from which human 
values can be inferred [62,161,177,180,181]. Animals’ (e.g. 
herbivores) subsistence is based on plants distributed in quite wide 
areas, therefore they possess more homogenized isotopic ratios 
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that more likely reflect local isotopic values [61,62]. Conversely, 
a broad array of factors, including flowing water, fluctuations in 
seasonal and annual rainfall, particular cooking and beverage 
preparation methods, diet, and others, can lead to inconsistencies 
and variations in the δ18O of skeletal remains within a single 
archaeological site, consequently affecting the oxygen isotopic 
signatures [182-187]. Moreover, the reservoir effects that cause an 
enrichment in 18O can also play a role in introducing heterogeneity 
within a local environment [185]. Furthermore, the isotopic 
incorporation may vary due to the number of years during which 
tooth enamel develops, leading to isotopic variability among 
teeth of the same individual [188-190]. Similar to the carbon and 
nitrogen stable isotope data, studies on strontium stable isotope 
analysis in the Arabian Peninsula are limited. We provide some 
examples below. Al-Shorman and El-Khouri applied strontium 
isotope analysis from rural sites in Barsinia, in Northern Jordan 
[191]. The earlier archeological excavations of the regions revealed 
that its occupation started during the Iron Age and continued 
until the Ottoman period. The site is particularly relevant as it was 
characterized by economic wealth, suggesting an enhancement of 
population dynamics. Yet, the study showed that all the individuals 
analyzed were raised in the area and their food was taken from 
spatially restricted localities in the region [191].

Recently, Ryan and colleagues applied strontium analysis to 
investigate the origin and the production of cotton in the ancient 
site of Mleiha, in the United Arab Emirates [192]. The authors found 
different isotopic signatures of cotton seeds and textiles as compared 
to modern plants retrieved from the same area. Hence, they should 
be considered “non-local”. Along with archaeobotanical and 
archaeological evidence, the authors proved the existence of a trade 
network between Southeaster Arabia and India [192]. Evidence 
on human migration from strontium and oxygen stable isotope 
analysis in the Arabian Peninsula is also limited. Human skeletal 
remains from Neolithic sites within the United Arab Emirates have 
been subjected to investigation in a recent article [193]. The isotope 
ratios of strontium (87Sr/86Sr) and oxygen (18O/16O) of the remains 
assessed suggest the population was resident in the coastal area. 
Yet, the data suggested that mobility occurred between the coast 
and the inland regions [193]. A very recent study from Wang 
and colleagues has applied a combined approach encompassing 
isotopic and genetic analyses of samples recovered from Nevali 
Çori to study the Neolithization in the Fertile Crescent [194]. The 
authors analyzed 44 molar enamel from 28 human individuals 
thought to have lived between ca. 8700 to 7500 BCE for 87Sr/86Sr, 
 18O and  13C analyses. The isotopic data indicated a reduction 
in mobility and growing resilience on domesticates by ca. 8300 
BCE and contributed to the understanding of the Neolithization 
process in the Near East [194]. Regarding the Arabian Peninsula, 
a comprehensive investigation is necessary to establish a robust 
repository of Sr and O isotope variations within this region. This 
will serve as a foundational resource for archaeological studies 
focusing on human and animal mobility.

Ancient DNA (aDNA) analysis
Both the production and the analysis of human genetic data 

have undergone a complete transformation in the era of NGS, 
where genomes are being read at an unprecedented pace [195] 
and have allowed the completion of the human genome [196]. This 
phenomenon not only promises to transform the field of genetics but 
has far-reaching effects in understanding human prehistory when 
applied to the aDNA field. The study of aDNA is a powerful tool for 
discovering the origins, migration patterns, kinships, admixtures, 
and cultural shifts in past populations but it also allows retracing 
the origin of the modern mosaic of DNA sequences [197]. As stated 
above, archaeological skeletal series represent an important source 
of information about our past. The discovery of long-term DNA 
survival in skeletal remains [198, 199] and sediment [200, 201] 
has allowed human genetics to infer evolutionary processes [202]. 
Nevertheless, aDNA studies face specific challenges, one of which 
is represented by the retrieval of enough DNA endogenous content 
[202]. This is strictly dependent on post-mortem degradation 
processes. DNA starts decaying immediately after death as a result 
of the exposure to unmitigated insults by endonucleases, bacteria 
and fungi as well as by oxidation and hydrolysis in absence of the 
enzymatic repair mechanisms that help maintain the genomic 
integrity in living cells [203, 204]. DNA fragmentation is partly 
caused by depurination, a continuous process causing the increase 
of DNA molecule fragmentation with the age of the sample [205], 
although the deamination of cytosine residues towards the end of 
the molecules (resulting in apparent C to T or G to A substitution 
on 3’ and 5’ strand respectively) also represents one of the main 
damages observed on ancient DNA [203]. As a consequence, 
the endogenous DNA extracted from archaeological samples 
possesses features directly linkable to the abovementioned 
factors (e.g. reduction of fragments’ length; lesions preventing the 
replication; lesions causing nucleotide misincorporation during 
the replication), moreover its content in archaeological specimens 
is often extremely low (<1%) [206]. Long-term DNA preservation 
is influenced by the environment; in particular it seems better in 
“niche” microenvironments forming during fossilization. Pruvost 
and colleagues [207] analyzed bones that were subjected to 
different post-excavation preservation conditions and discovered 
that freshly excavated fossil bones and teeth are the most suitable 
samples for amplifying aDNA. 

Due to the difficulties related to aDNA retrieval and analysis, 
recent research focused on the identification of new substrates, 
the optimization of extraction methods as well as the control 
of contamination [208-210]. aDNA studies have been generally 
performed on teeth or dense bone fragments (e.g. cortical region of 
long bones) as those samples have been considered more enriched 
in endogenous DNA than the trabecular bone consisting of fewer 
osteocytes per gram [211]. Nevertheless, the petrous pyramid and 
the cementum layer in tooth root have been recently proved to be 
the most suitable substrates for aDNA analysis, as they display the 
highest degree of preservation of viable DNA [211, 212]. Certainly, 

http://dx.doi.org/10.32474/JAAS.2023.08.000290


                                                                                                              Volume 8 - Issue 3 Copyrights @ Sara TomeiJ Anthro & Archeo Sci

Citation: Sara Tomei*, Ambra D’Aurelio, Ferhan Sakal, Francesca Castorina, Faisal Al Naimi and Cristina Martínez Labarga. Ancient 
Biomolecules Unravel our History: A Technical Update with Examples from the Middle East. J Anthro & Archeo Sci 8(3)- 2023. JAAS.
MS.ID.000290. DOI: 10.32474/JAAS.2023.08.000290

1101

an important factor to evaluate is the invasiveness of the sampling 
procedures, especially for those skeletal elements not easily 
accessible (e.g., petrous bone). In fact, the extent of damages caused 
by a disruptive sampling of bone specimens should be limited 
especially for museum collections. Sirak and colleagues proposed 
an innovative minimally invasive method for accessing the petrous 
bone by drilling the cranial base [14]. A minimal-invasive protocol 
dedicated to sampling the tooth cementum of the roots has also 
been recently proposed and relies on the direct digestion of the 
target portion of the teeth [16]. Additionally, it has been proved that 
aDNA yield from petrous bone was in the order of hundreds-fold 
higher than other skeletal elements tested (including rib, tooth or 
long bones) and overall, it performed better than tooth cementum 
[213, 214]. Recently, another interesting study pointed to ear 
ossicles as an alternative source of aDNA, able to produce a DNA 
recovery similar to the cochlea; however, they offer the advantage 
of sampling (from intact skulls without significant damage to the 
surrounding material) [215].

aDNA is usually more preserved in permafrost or extremely 
cold climates [216-222] whereas high temperatures weaken DNA 
preservation directly and indirectly by enhancing the proliferation 
of fungi, bacteria and other microorganisms that contribute to 
endogenous DNA degradation and contamination [216, 217, 221, 
223]. Despite that, researchers recently provided aDNA data from 
arid environments [214]. Contamination is of paramount concern 
in aDNA analysis due to the nature of aDNA itself (highly degraded 
and fragmented molecules) that can be easily mixed with exogenous 
molecules if strict precautions are not taken [224]. The problems of 
contamination may be partly solved by using ad-hoc facilities for 
aDNA extraction, however it is of paramount importance to pay 
extreme attention to avoid any carry-over between pre- and post- 
PCR laboratories [225]. The publication of the first ancient genome 
in 2010 was followed in the last years by an unprecedented and 
unexpected amount of genomic data [226-228]. The advent of  NGS 
has significantly propelled the field of human aDNA forward. This 
progress has moved beyond the analysis of only a few hundred 
base pairs of mtDNA, which was susceptible to contamination and 
offered limited biological insights. Instead, NGS has enabled large-
scale population studies, leading to a transformative shift in our 
understanding of human history [214,229]. Although inconceivable, 
partial and complete genomic sequences have been obtained from 
modern humans [230-232], Neanderthal [233, 234] and even 
Denisovans [235, 236]. Some of the genomes possess an extremely 
high depth as compared to that achieved in contemporary humans 
[228]. 

NGS has also played a vital role in enhancing our comprehension 
of the degradation processes that impact aDNA as time passes. For 
instance, the phenomenon of cytosine deamination, leading to C>U 
changes at regular cytosines and C>T changes at 5-methylated 
cytosines, has facilitated the improvement of distinguishing 
between endogenous and contaminant sequences. Additionally, 
it was also reported that the frequency of cytosine deamination 
increase with the age of a sample [237]. However, despite its 
numerous advantages, NGS is not exempt from encountering 

technical challenges when applied to the field of aDNA. During 
the initial application of NGS methods in aDNA studies, standard 
library construction protocols were used. However, it soon became 
evident that these protocols resulted in a significant loss of DNA. 
There are two main approaches to NGS library construction: 
direct sequencing (shotgun metagenomics) and enrichment for 
specific sequence regions using hybridization capture, followed by 
sequencing. Hybridization enrichment becomes necessary when 
the endogenous DNA content is low in a given sample.

Among these methods, whole exome capture of ancient 
samples has shown great promise for aDNA studies. Exomes, which 
encompass the protein-coding regions of the genome, tend to be 
more conserved than other parts of the genome. Consequently, 
exome capture has the potential to be particularly suitable for 
investigating extinct species, where no closely related genome 
sequence information is available [238].

In a very recent study Wang and colleagues analyzed six 
individuals retrieved from Nevali Çori to study the inner-
community structure during the late Neolithic in the Southern 
Levant. The study indicated consanguinity and raised questions 
on how the Late Neolithic societies were structured internally and 
whether they were characterized by endogamy in terms of cultural 
behavior and social practices [194]. Despite the Arabian Peninsula 
played a critical role in the early structuring of modern humans, it 
is still underrepresented by large-scale genomic studies [4,56,239]. 
Unfortunately, the poor environmental conditions that characterize 
the Arabian Peninsula have not facilitated the recovery of aDNA, 
hence the aDNA evidence of the Arabian Peninsula is inferred from 
the application of modeling statistical and bioinformatic tools 
on modern genomic data [239,240]. DNA studies applied to the 
Arabian Peninsula have revealed that Arabians were subjected to 
a population bottleneck parallel to the peninsula’s aridification 
around 6 kya. In fact, despite Arabia being characterized by arid 
weather, there have been several humid periods resulting in what 
has been called “green Arabia” [57]. In a recent study, Almarri 
and colleagues conducted an analysis of a high-coverage dataset 
comprising samples from the Arabian Peninsula, the Levant, and 
Iraq. Their aim was to gain insights into the population structure, 
demographic history, and admixture patterns of both modern and 
ancient humans in these regions. By employing a model based on 
published ancient genomes, the researchers successfully identified 
distinctions between the Levant and Arabia. Specifically, the Levant 
exhibited a higher European/Anatolian ancestry, while Arabia 
displayed higher African and Natufian ancestries [56]. However, it 
should be noted that this study made inferences on past populations 
based on modern DNA data. Additional studies applying aDNA 
are warranted to better understand the origin and connections 
of Arabian populations that are currently underrepresented in 
genome-wide studies [56].

Dental Calculus, a Valuable Tool to Investigate 
Microbiome

aDNA can be retrieved in a wide variety of substrates [241] 
some of which, like dental calculus, represent a valuable source 
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of ancient biomolecules that have the potential to provide useful 
information on oral ecology, metabolites, and ancient microbiomes. 
Dental calculus – tartar or mineralized dental plaque – is a mineral 
matrix covering the tooth surface is composed of bacteria, food, and 
environmental debris forming during time [242]. The development 
of dental calculus depends on the trapping of all the mentioned 
materials by the inorganic salts of saliva [243, 244]. Dental 
calculus is commonly detected in all human populations both past 
and present, and it is generally well preserved in archaeological 
contexts [242, 245] even if, due to dietary variations, its retrieval 
has been proven more challenging in ancient and modern foraging 
or hunter-gatherer groups [246] as despite the poor oral hygiene 
and the genetic pre-disposition the accumulation of larger deposits 
is related to the consumption of soft carbohydrates [245,247,248].

Dental calculus was partly overlooked until the 1960s-1970s 
whereas, afterwards, it received particular attention as it offers 
the chance to reconstruct the oral microbiome, diet, medicinal 
therapies, and paleoenvironment [43,242,244,249-257]. The 
analysis of archaeological calculus deposits can be performed 
following different methodologies. The most common approach is 
certainly the morphological examination, by light microscopy, of 
the entrapped material in samples decalcified by hydrochloric acid 
(HCl). In the 1990s and 2000s, the analysis of starch granules trapped 
in dental calculus deposits provided fundamental contributions to 
the reconstruction of the starchy components – roots, tubers, seeds 
– of the hominin and human diet [249-251,255,258,259], moreover, 
pyrolysis profiles were used to infer about cooking practices [249]. 
Furthermore, the presence of non-dietary debris (e.g. textile fiber) 
could also help in reconstructing craft activities and trade [260].

More recent approaches include DNA analysis and gas-
chromatography that allow the identification of specific compounds 
attributable to the ingestion or consumption of plants and or 
volatile substances’ inhalation [43,244,249,261-265]. Nowadays, 
the application of shotgun metagenomics determined a change in 
the field, because, as the bacterial community changes over different 
stimuli (e.g. diet, hygiene practices etc.), the analysis allows to 
investigate past human microbiome and also to make inferences 
on health status and diet during human evolutionary history 
[256,266,267]. The application of high-throughput sequencing has 
allowed researchers to move from the identification of calcified 
bacterial cells [268], dietary micro debris, host mtDNA [269] and 
biomolecules from a small range of selected species [269, 270] to 
the investigation of entire microbial communities [256,266]. The 
initial characterization of the microbiota of the ancient oral cavities 
was made possible by the target characterization of the 16S rRNA 
gene. This gene contains hypervariable regions that are informative 
of specific microbial communities [271]. Nevertheless, 16S rRNA 
sequencing has proved to generate skewed taxonomic data that 
can introduce biases when reconstructing the ancient microbiome 
[271]. For this reason, shotgun metagenomic sequencing is 
recommended for the analysis of the ancient microbiome over 
16S rRNA sequencing [272, 273]. The reconstruction of a partial 
genome of an uncultured TM7 bacterium by Liu et al. [274] also 
pointed at shotgun metagenomics sequencing as a useful tool for 

the identification of uncultivable bacteria as well as for the recovery 
of extinct microbial genomes for which there are no reference  
sequences [242].

The recent advancement of molecular methods made 
dental calculus accessible to a wide range of analyses, including 
metagenomics and metaproteomics; the latter, although less 
explored, has recently been applied to dental calculus samples 
[253,256]. The metaproteomic approach allows the simultaneous 
characterization of the levels of individual proteins expressed 
by both microbial community and host, providing the direct 
assessment of protein functions but also allowing the elucidation of 
the interactions between potential disease-causing microorganisms 
and their host [253,275,276]. The work by Christensen et al. (2018) 
led to the identification of oral disease-susceptible individuals 
that were not apparent from the macroscopic examination of the 
skeletal remains demonstrating that the molecular investigation 
of dental calculus represents a valuable source of additional 
data useful to enhance our understanding of the health status 
of past human populations [253]. Despite the challenges of the 
emerging techniques, metaproteomics promises to yield a unique 
understanding of the role of the microbiome in the health status 
and diseases of past populations [242]. Dental calculus has 
the potential to become one of the most invaluable sources of 
information concerning ancient skeletal remains. Its analysis allows 
the investigation of various aspects, including diet, health status, 
diseases, microbial presence, and even the cultural affinity of past 
human populations. [267]. When integrated with data acquired 
from various methods, the examination of dental calculus holds the 
potential to offer a comprehensive reconstruction of our history.

To the best of our knowledge, the analysis of dental calculus has 
not been utilized in the context of the Arabian Peninsula. 

Ancient proteins
Ancient proteins represent another class of biomolecules 

commonly referred to as “paleoproteomics” [24]. While the 
discipline has been introduced in the 1950s [277], it is only in the 
2000s that techniques based on mass spectrometry shaped this field 
[24, 278]. Despite still at its infancy, the study of ancient proteins has 
many applications in evolutionary biology and archaeology [24]. 
Its application to biological tissues (e.g., ancient bones and teeth) 
allows phylogenetic studies when aDNA could not be used because 
degraded [279]. Proteins are indeed better preserved than DNA 
[24]. This enabled the proteomic analysis of samples substantially 
older than the experimented aDNA temporal limit, with the oldest 
sample so far analyzed being 1.77 million years old [279]. Beyond 
being a valuable tool in taxonomic and phylogenetic studies, 
ancient proteins can be leveraged for a number of other different 
applications. During the life of an organism, proteins are usually 
the expression of a specific tissue or physiological condition [24]. 
Hence, their study can give, for example, invaluable information 
concerning the origin of the material analyzed and the conditions 
surrounding the death of an individual [280]. In a study of 2013, 
Maixner and colleagues were able to identify many proteins in the 
brain tissue of the Tirolean mummy Ötzi, some typically expressed 
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by brain cells and others in situations of stress, opening up again 
the possibility of the Tirolean man being injured at the head before 
his death [280].

Furthermore, paleoproteomics has been used in archaeology 
to investigate past cultures. Despite some limitations, mainly due 
to the high impact of degradation processes on proteins removed 
from their original tissue and the lack of references required for 
accurate identification of the vegetal species [23,24], rests of 
proteins in ancient pottery and dental calculus have indeed the 
potential to reconstruct the main foodstuff used in the past. With 
respect to lipids, they are more concentrated in plant foods and 
can better distinguish between different food when mixed, thanks 
to their being taxonomic- and tissue-specific [23,24]. For instance, 
in a study by Hendy and colleagues from 2018, ancient proteins 
extracted from 8000-year-old ceramic vessels from West Mound in 
Anatolia revealed precisely the diet of the population. Interestingly, 
the authors were also able to discover that specific vessels were 
used only for certain types of food [23,24]. However, just a few 
studies were able to successfully study paleoproteins from ceramics 
thus far [23,24].

Both animal and vegetal proteins serve as raw materials for 
the production of clothes and they were used in building materials, 
paintings and glue. Hence, the peloeproteomics analysis of these 
materials can help the interpretation of some cultural aspects 
and habits of our past [23,24]. For instance, proteins such as 
fibroin and keratins help identify materials such as silk and wool 
[23,24] and the proteomics analysis of glues and paintings has 
allowed the detection of a wide range of proteins from different 
sources [281, 282]. Amino acid racemization (AAR) dating relies 
on the detection of amino acids. In living tissues, amino acids 
naturally occur in the L-configuration. However, following death, 
they undergo racemization and convert into the D-configuration 
[20]. The time since death may be estimated by analyzing the rate 
of D- and L-amino acids [20,283]. The AAR dating works well in 
highly mineralized substrates, such as tooth enamel [20,284]. The 
technique has also been applied to the study of early human activity 
in Europe [284].

Several methods are employed for the study of ancient proteins 
[20]. One of the methods for assessing ancient proteins is through 
immunoassays, which however can generate false positives and 
negatives, especially when analyzing degraded samples. These 
assays use the reaction of a specific antibody binding to an antigen. 
Their advantage is their effectiveness on challenging materials, 
such as ceramics [23, 285], as shown in a study of 2000 by Craig and 
colleagues where their application has allowed the detection of milk 
proteins on ceramic pots, unravelling the issue concerning dairy 
diffusion on the Scottish Atlantic coast during the Iron Age [285]. On 
the other hand, they require pre-knowledge of the target proteins 
and the conservation of specific epitopes [23,285]. Therefore, 
because of their limitations, they have been replaced by other 
techniques for the study of ancient proteins [20]. The introduction 
of mass spectrometry (MS) has revolutionized the paleoproteomics  
field. MS is more reliable as compared to immunoassays because 

the mass and charges of the ionized molecules are detected 
precisely [20]. Matrix-assisted laser desorption/ionization MS 
(MALDI-MS) was applied initially in 2000 by Ostrom and colleagues 
[278]. In this study, peptides were identified from the osteocalcin 
of a 53,000-year-old bison [278]. Subsequently, the practicality of 
applying MALDI-time-of-flight (TOF) MS to collagenase-digested 
and trypsin-digested bone collagen surpassed that of using MALDI-
TOF on purified osteocalcin [24]. This led to the development of 
the so-called ZooMS (Zooarchaeology by MS) [24], whose low 
cost and high sample throughput advanced its application in 
archaeology, ecology and cultural heritage [286]. ZooMS produces 
peptides mass fingerprints that are checked against reference 
fingerprints of known taxa; thus, it is used to detect the taxonomies 
of archaeological remains. Nevertheless, even though ZooMS has 
proved useful to discriminate between family and genera-level 
taxa, it is not as efficient in differentiating species due to the lack of 
sufficient protein variability [20].

Successively, the use of tandem mass spectrometry (MS/MS) 
led to an improvement in data accuracy and taxonomic resolution. 
This technique is indeed able to analyze a mix of proteins and, 
thanks to the parallel development of new software, to define de 
novo sequences, allowing the determination of proteins sequences 
of extinct species for which genomic data could not be obtained 
[24]. This is evidently valuable for phylogenetic studies. The MS/
MS method has been applied to obtain proteome sequences from a 
Pleistocene specimen of Stephanorhinus of 1.77 million years [279]. 
Multiple methods are currently available for sample preparation for 
mass analysis. The main steps usually include the demineralization 
of the tissue, protein solubilization and buffer exchange, protein 
digestion and peptide purification. The protocols must be adjusted 
by considering multiple factors, from the status and kind of sample 
to the target amount and types of proteins [24]. Numerous programs 
for paleoproteomics analysis have been developed, improving the 
accuracy of the results and the applicability of the field [24].

Similar to the aDNA field, the paleoproteomics field needs to 
deal with contamination issues specific to the ancient biomolecules 
field. The contamination discrimination is based on the use of 
markers of degradation that can differentiate truly endogenous 
ancient proteins from potential modern contaminants [20]. Protein 
fragmentation can occur due to enzymatic damage (especially from 
the burial environment) or through hydrolysis via bond cleavage. 
Mass shifts are detected as an effect of protein degradation [20]. 
As an example, during degradation, glutamine and asparagine 
undergo deamidation and are transformed into glutamic acid and 
aspartic acid, respectively. Environmental factors like temperature 
and pH can influence these deamidation modifications. However, 
despite these influences, deamidation serves as a significant 
marker of protein degradation[20]. Ramsøe and colleagues have 
recently developed a method for the authentication of ancient 
proteins, called deamiDATE 1.0 [287]. The method was utilized on 
shotgun proteomic data of bone collagen derived from modern, 
archaeological, and extinct taxa. Through this approach, the 
researchers successfully distinguished authentic ancient proteins 
from contaminants in a case study involving dental calculus from 

http://dx.doi.org/10.32474/JAAS.2023.08.000290


Citation: Sara Tomei*, Ambra D’Aurelio, Ferhan Sakal, Francesca Castorina, Faisal Al Naimi and Cristina Martínez Labarga. Ancient 
Biomolecules Unravel our History: A Technical Update with Examples from the Middle East. J Anthro & Archeo Sci 8(3)- 2023. JAAS.
MS.ID.000290. DOI: 10.32474/JAAS.2023.08.000290

                                                                                                                                                          Volume 8 - Issue 3 Copyrights @ Sara TomeiJ Anthro & Archeo Sci

1104

the Neolithic period [287]. Moreover, further developments in the 
method could enable the study of cooking practices in the past by 
assuming that the cooking process accelerates deamination. This 
strategy could be, in principle, applied to proteins extracted from 
animal bones but also pottery and dental calculus [287]. 

Paleoproteomics is a promising field of bioarcheology of recent 
and fast development. It has the potential to elucidate our history 
and evolution being applicable to a number of different and very 
old (at least if mineralized samples) substrates. paleoproteomics 
studies are still limited. However, we expect to see further 
technological improvements parallel to the increasing interest in 
the field. To the best of our knowledge, there have been no human 
paleoproteomics studies conducted in the Arabian Peninsula. This 
lack of research is likely attributed to the extreme environmental 
conditions in the region, which can lead to the deterioration of the 
organic components of archaeological remains. 

Ancient Lipids
Lipids are an important class of organic substances that can 

be recovered in association with a wide range of archaeological 
artifacts and substrates that can be biomolecularly and isotopically 
characterized. The research in this field focused on a wide variety 
of substrates. Pottery artifacts are archaeological findings allowing 
inferring food production, storage, and processing, even if their 
original function is not always obvious [288,289]. These objects 
usually absorb organic residues entrapping and preserving organic 
biomolecules, including ancient lipids within the substances 
cooked and/or stored in them [290]. It has been demonstrated that 
the chemical analysis of these residues may help to understand the 
function of these archaeological artifacts as well as to allow the 
investigation of the culinary, cultural and social practices of past 
human populations parallelly to the transitions in human history 
[291-293]. The analysis of steroidal compounds in soil, coprolites 
and sediments has been proved helpful in investigating waste 
disposal, dairy, and agricultural activities as well as dietary patterns 
[294-304]. Furthermore, lipids from bog bodies, mummies and 
human skeletal remains [305-311], as well as from plants have also 
been analyzed [312,313].

The incorporation pattern of lipids taken from the diet as well 
as the distribution of lipid tissues are both well-known [314,315]. 
The analysis of isotopic signatures of bone lipids represents a 
valuable source of additional information for the investigation 
of past dietary patterns [307,310,311,316-319], and it allows 
not only to implement data from the analysis of bone proteins 
but also to shorten the investigated timeframe as they possess a 
faster turnover than proteins [320-322]. In addition, as previously 
described, the isotopic composition of bone proteins allows 
inferring information on diet’s proteins intake, whereas that of 
lipids returns the individual’s whole diet [146,323,324]. Ancient 
lipids are less susceptible to degradation as compared to aDNA and 
proteins, due to their chemical structures (e.g., limited presence 
of functional groups, high abundance of aliphatic chains, rings 
and branches). Moreover, the entrapment in organic and mineral 
matrices enhances their preservation even more, reducing the 

microbial degradation and the diffusion of the biomolecules [325].

Generally, the research in this field focuses on steroidal 
compounds and more hydrophobic molecules that possess a higher 
resistance to microbial and chemical degradation. This is due 
to fatty acids that are only rarely retrieved from archaeological 
samples, with the exception of specimens collected from arid 
environments [316]. Lipid analysis follows well-established 
protocols [326-328]. The most employed method to extract 
lipids from different substrates is the solvent extraction using 
intermediate polarity systems. According to the substrate’s nature 
different preparation treatments may be needed; for instance, bone 
remains need pulverization whereas others (e.g. wax, fat, and other 
substances as resinous and bituminous residues) may be directly 
dissolved in solvents [28]. GC and GC-MS are employed to evaluate 
which compounds they originate from [27, 329], whereas stable 
carbon isotope analysis through GC-combustion-stable isotope 
ratio MS (GC-c-IRMS) identifies animal lipids in archaeological 
potsherds [290,330-333]. Currently, the use of acidified methanol 
extraction is commonly paired with gas chromatography-mass 
spectrometry (GC-MS) and gas chromatography combustion mass 
spectrometry (GC-C-MS) for analysis [334-336]. The two-step 
extraction procedure allowed the retrieval of a wider range of 
lipids with an appreciable amount of endogenous fatty acids from 
samples retrieved in hot environments [334].

The traditional interpretation approach based on the comparison 
with modern fat references [29,327,330,331,333,337,338], showed 
some limitations related to a higher variation in the diet of omnivores 
compared to herbivores and to variations in the faunal diet due 
to environmental, temporal, and cultural changes, etc. [339-342]. 
Moreover, it should be noticed that the ancient lipids recovered 
from archaeological artifacts do not necessarily derive from lipid 
tissue; for instance, the boiling of animal bones for preparing soups 
may cause the transfer of bone marrow lipids [336]. The application 
of GC-MS analysis has been proved useful to understand Nabataen 
funeral practices of monumental tombs of ancient Hegra, in Saudi 
Arabia [343]. A mixture of fatty acids and triterpenic compounds 
was retrieved from four textile samples and suggested the presence 
of vegetable oil and probably elemi resin. Although the exact botanic 
origin of the resin could not be identified, the results of these 
experiments suggested that the resinous material belonged to the 
genus Canarium, providing insights into how Nabataeans prepared 
dead bodies for their funerary practices [343]. GC and GC-MS have 
also been applied in the field of petroleum geochemistry to explore 
bituminous mixtures found in archaeological excavations [344]. 
Bitumen from natural sources in Iraq, Syria, Iran, Bahrain, and 
Kuwait has been utilized as a reference for calibrating biomarkers in 
hydrocarbon fractions [344]. The Middle East is rich in oil-stained 
rocks, deposits of solid bitumen and oil and gas shows, particularly 
in Iran in the Zagros mountain [344]. Evidence from Syria (Tell Atij, 
6800 BCE) and Israel (Netiv Hagdud, 8900-7800 BCE) has shown 
that in the Neolithic time bitumen was used as an adhesive to glue 
flint elements to several tools [344]. Bitumen mixtures retrieved 
from Tell el’Oueili in Iraq have revealed the routes of Mesopotamian 
traders over time [344]. In Syria bitumen has been found to be used 
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as a hafting material during the Middle Paleolithic [344]. Bitumen 
was also found in balms of Egyptian mummies, dated between 
1000 BCE to 400 BCE [344].

The use of GC-MS has allowed the characterization of mummies 
samples from Yemen and the elucidation of Yemeni methods for 
body preservation [345]. A more recent study has analyzed 31 
samples retrieved from the ancient Harbour of Qâni’ (Yemen) 
which led to the identification of frankincense and bitumen which 
was thought to have been imported from Iran [346]. Another study 
has also applied GC-MS along with other techniques to reconstruct 
the Yemeni commercial routes during the Middle Ages [347]. 
The majority of samples analyzed were made of a diterpenoid 
substance similar to East African copal [347]. Commercial routes 
and exchange networks represent an important subject to study 
as they can provide informative clues on past societies. In a very 
recent study, Suryanarayan and colleagues analyzed ceramic lipid 
residues from Hili, al Ain in the United Arab Emirates to shed light 
on the organic products that were part of the exchange networks 
that occurred in Arabia during the Bronze Age [348]. Their results 
indicated that the vessel studies were associated with the handling 
of products of animal and plant origin [21,348]. Although studies 
that apply GC and GC-MS in the Middle East do exist, they have been 
mainly focused on non-human remains. The Middle East and the 
Arabian Peninsula in particular could significantly benefit from 
additional studies aiming at analyzing lipid substrates in human 
archaeological samples.

Concluding Remarks
The technical advancements occurred during the last few 

decades determined a dramatic and previously inconceivable 
expansion of the availability of data from progressively older 
samples at a constantly increasing level of detail. The application 
of ancient biomolecular analysis is paving the way toward a refined 
characterization of population dynamics and socio-cultural changes. 
This review provides an up-to-date overview of the current methods 
for the study of ancient biomolecules. We hope that our review will 
facilitate the application of ancient biomolecules to studies to be 
carried out in underrepresented regions like the Arabian Peninsula.
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